UV Sensing Properties of ZnO Nanowires Grown on Glass by Rapid Thermal Oxidation of Zinc Films

I. Mihailova 1 , V. Gerbreders 1 , Ē. Sļedevskis 1 , A. Bulanovs 1  and V. Paškevičs 2
  • 1 G. Liberts' Innovative Microscopy Centre, Daugavpils University
  • 2 Department of Physics, Daugavpils University


The nanostructured ZnO thin films were successfully synthesized by rapid thermal oxidation of metallic zinc films without catalysts or additives. On the surface of thin films the formation of ZnO nanowires was observed. In the work, the optical and electrical parameters and photoresponses of the obtained ZnO thin films were investigated. Nanostructured thin films of the type have a promising potential for the use in optoelectronics, sensor technique and biomedical sciences

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Chuah, L. S., Hassan, Z., & Tneh, S. S. (2009). Zinc oxide nanorods on porous silicon/silicon substrates. Journal of Optoelectronics and Advanced Materials, 11(11), 1637-1640.

  • 2. Lee, Y.M, & Yang, H.W. (2011). Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solidstate dye-sensitized solar cells. Journal of Solid State Chemistry, 184, 615-623.

  • 3. Ye, Z.Z., Yang, F., Lu, Y.F., Zhi, M.J., Tang, H.P., & Zhu, L.P. (2007). ZnO nanorods with different morphologies and their field emission properties. Solid State Communications, 142(8), 425-428.

  • 4. Yaoa, I.C., Tsengb, T.Y., & Lina, P. (2012). ZnO nanorods grown on polymer substrates as UV photodetectors. Sensors and Actuators, A: Physical, 178, 26-31.

  • 5. Carotta, M.C., Cervi, A., di Natale, V., Gherardi, S., Giberti, A., Guidi, V., Puzzovio, D., Vendemiati, B., Martinelli, G., Sacerdoti, M., Calestani, D., Zappettini, A., Zhac, M., & Zanotti, L. (2009). ZnO gas sensors: a comparison between nanoparticles and nanotetrapods-based thick films. Sensors and Actuators, B 137, 164-169.

  • 6. Reyes, P.I., Duan, Z., Lu, Y., Khavulya, D., & Boustany, N. (2013). ZnO nanostructure-modified QCM for dynamic monitoring of cell adhesion and proliferation. Biosens. Bioelectron, 41, 84-9.

  • 7. Mihailova, I., Gerbreders, V., Tamanis, E., Sledevskis, E., Viter, R., & Sarajevs, P. (2013). Synthesis of ZnO nanoneedles by thermal oxidation of Zn thin films. Journal of Non-Crystalline Solids, 377, 212-216.

  • 8. Ridhuan, N.S., Abdul Razak, K., Lockman, Z., & Abdul Aziz, A. (2012). Structural and morphology of ZnO nanorods synthesized using ZnO seeded growth hydrothermal method and its properties as UV sensing. PLoS ONE 7(11): e50405.

  • 9. Kumar S., Kim, G. H., Sreenivas, K., & Tandon, R. P. (2007). Mechanism of ultraviolet photoconductivity in zinc oxide nanoneedles. J. Phys.: Condens. Matter, 19, 472202.

  • 10. Dwivedi, V.K., Srivastava, P., & Vijaya Prakash, G. (2013). Photoconductivity and surface chemical analysis of ZnO thin films deposited by solution-processing techniques for nano- and micro-structure fabrication. Journal of Semiconductors, 34(3), 033001-5.

  • 11. Dutta, M.,& Basak, D. (2009). Multiwalled carbon nanotubes/ZnO nanowires composite structure with enhanced ultraviolet emission and faster ultraviolet response. (2009). Chemical Physics Letters, 480, 253-257.

  • 12. Lee, J.S., Saif Islam, M., & Kim, S. (2007). Photoresponses of ZnO nanobridge devices fabricated using a single-step thermal evaporation method. Sens. Actuators B: Chem., 126(1), 73-77.


Journal + Issues