Micro-grid for on-site wind-and-hydrogen powered generation

P. Suskis 1 , A. Andreiciks 1 , I. Steiks 1 , O. Krievs 1 , and J. Kleperis 2
  • 1 Institute of Industrial Electronics and Electrical Engineering,Riga Technical University, 1 Kronvalda Blvd., LV-1010, Riga, LATVIA
  • 2 Institute of Solid State Physics, University of Latvia,8 Kengaraga Str., LV-1063, Riga, LATVIA


The authors propose a micro-grid for autonomous wind-and-hydrogen power generation thus replacing such traditional fossil-fuelled equipment as domestic diesel generators, gas micro-turbines, etc. In the proposed microgrid the excess of electrical energy from a wind turbine is spent on electrolytic production of hydrogen which is then stored under low-pressure in absorbing composite material. The electrolyser has a non-traditional feeding unit and electrode coatings. The proposed DC/DC conversion topologies for different micro-grid nodes are shown to be well-designed. The prototypes elaborated for the converters and hydrogen storage media were tested and have demonstrated a good performance.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Ulleberg, O., Nakken, T., & Ete, A. (2010). The wind/hydrogen demonstration system at Utsira in Norway: Evaluation of system performance using operational data and updated hydrogen energy system modelling tools. Intern. J. of Hydrogen Energy, 35, 1841-1852.

  • 2. Muhammad, U.K., Umar, S., Musa, M., Garba, M.M., & Zangina, U. (2013). Utilization of excess wind energy for electrolytic hydrogen production. Intern. J. of Modern Engineering Sciences, 2, 28-38

  • 3. Taljana, G., Fowlera, M., Canizaresa, C., & Verbicb, G. (2008). Hydrogen storage for mixed wind-nuclear power plants in the context of a Hydrogen Economy. Intern. J. of Hydrogen Energy, 33, 4463-4475.

  • 4. Menanteau, P., Quéméré, M.M., Le Duigou, A., & Le Bastard, S. (2011). An economic analysis of the production of hydrogen from wind-generated electricity for use in transport applications. Energy Policy, 39, 2957-2965.

  • 5. Aguado, M., Ayerbe, E., & Azcarate, C. (2009). Economical assessment of a windhydrogen energy system using WindHyGen® software. Intern. J. of Hydrogen Energy, 34, 2845-2854.

  • 6. Mummadi, V. (2011). Design of Robust Digital PID Controller for H-Bridge Soft- Switching Boost Converter, Industrial Electronics, IEEE Transactions, 58 (7), 2883-2897.

  • 7. Jingquan, Chen, Maksimovic, D., & Erickson, R. (2011). Buck-boost PWM converters having two independently controlled switches. Power Electronics Specialists Conference, PESC 2001 IEEE 32nd Annual, 2, 736-741.

  • 8. US Department of Energy (2006) Planned Program Activities for 2005 - 2015, website address (May 2012): www1.eere.energy.gov/hydrogenandfuelcells

  • 9. Grinberga, L., Kleperis, J., Bajars, G., et al. (2008). Estimation of hydrogen transfer mechanisms in composite materials. Solid State Ionics, 179, 42-45.

  • 10. Lesnicenoks, P., Berzina, A., Grinberga, L., & Kleperis, J. (2012). Research of hydrogen storage possibility in natural zeolite. Intern. Sci. J. for Alternative Energy and Ecology (ISJAEE), 9, 16-20.

  • 11. Kleperis, J., Lesnicenoks, P., Grinberga, L., Chikvaidze, G., & Klavins, J. (2013). Zeolite as material for hydrogen storage in transport applications. Latv. J. Phys. Tech. Sci., 50 (3), 59-64.

  • 12. Hydrogen Pathway: Cost Analysis: www.ika.rwthaachen. de/r2h/index.../Hydrogen_Pathway:_Cost_Analysis

  • 13. Vanags, M., Kleperis, J., & Bajars, G. (2011). Electrolysis model development for metal/electrolyte interface: Testing with microrespiration sensors. Intern. J. of Hydrogen Energy, 36, 1316-1320.

  • 14. Vanags, M., Kleperis, J., & Bajars, G. (2012). Water Electrolysis with Inductive Voltage Pulses. In: Electrolysis, Ch. 2 (ed-s: Janis Kleperis and Vladimir Linkov), InTech, pp.19-44, doi.org/10.5772/52453

  • 15. Aizpurietis, P., Vanags, M., Kleperis, J., & Bajars, G. (2013). Ni-Al protective coating of steel electrodes in DC electrolysis for hydrogen production. Latv. J. Phys. Tech. Sci., (2), 53-59.

  • 16. Andreičiks, A., Steiks, I., & Krievs, O. (2013). A double inductor current source DC/DC converter for 2kW fuel cell application. CPE2013. 8th Intern. Conf., 332-336.

  • 17. Andreičiks, A., Steiks, I., Krievs, O. (2013). Design of current source DC/DC converter and inverter for 2kW fuel cell application. SDEMPED2013. 9th Intern. Symp., 683-688.

  • 18. Barros, J.D., & Silva, J.F. (2008). Optimal predictive control of three-phase NPC multilevel converter for power quality applications. IEEE Transactions on Industrial Electronics, 55(10), 3670-3681.


Journal + Issues