Photocatalitic Properties of Tio2 and ZnO Nanopowders / Tio2 un Zno Nanopulveru Fotokatalitiskās Īpašības

L. Grigorjeva 1 , J. Rikveilis 1 , J. Grabis 2 , Dz. Jankovica 2 , C. Monty 3 , D. Millers 1 , and K. Smits 1
  • 1 Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063, Riga, LATVIA
  • 2 Institute of Inorganic Chemistry, Riga Technical University 34 Miera Str., Salaspils, LV-2169, LATVIA
  • 3 CNRS Laboratoire Procedes, Materiaux et Energie solaire (PROMES), Font Romeu 66120, France


Photocatalytic activity of TiO2 and ZnO nanopowders is studied depending on the morphology, grain sizes and method of synthesizing. Photocatalysis of the prepared powders was evaluated by degradation of the methylene blue aqueous solution. Absorbance spectra (190-100 nm) were measured during exposure of the solution to UV light. The relationships between the photocatalytic activity and the particle size, crystal polymorph phases and grain morphology were analyzed. The photocatalytic activity of prepared TiO2 nanopowders has been found to depend of the anatase-to-rutile phase ratio. Comparison is given for the photocatalytic activity of ZnO nanopowders prepared by sol-gel and solar physical vapour deposition (SPVD) methods

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Fujishima. A., & Zhang, X. (2006). Titanium dioxide photocatalysis: present situation and future approaches. C.R.Chimie, (9), 750-760.

  • 2. Henderson, M.A. (2011). A surface science perspective on TiO2 photocatalysis. Surface Science Reports, 66 (6/7), 185-297.

  • 3. Rauf, M.A., Meetani M.A., & Hisaindee, S. (2011). An overiew on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with transient metals. Desalination, 276, 13-27.

  • 4. Sun, L., Zhao, D., Song, Z., Shan, Ch., Zhang, Z., Li, B., & Shen, D. (2011) Gold nanoparticles modified ZnO nanorods with improved photocatalytic activity. J. ColloidInterface Sci., 363, 175-181.

  • 5. Zhao, X., Yao, W., Wu, Y., Zhang, Sh., Yang, H., & Zhu, Y. (2006). Fabrication and photochemical properties of porous ZnWO4 film. J. of Solid State Chem., 179, 2562-2570.

  • 6. Grigorjeva, L., Millers, D., Grabis, J., & Jankovica, Dz. (2011). Photoluminescence and photocatalytic activity of zinc tungsten powders. Cent. Eur. J. Phys., 9 (2), 510-514.

  • 7. Kamei, M. (2012). Sense and reproducible photocatalytic activity evaluation instrument for transparent coatings. J. Condenced Matter Phys., (2), 47-49.

  • 8. Fujishima, A., & Zhang, X. (2006). Titanium dioxide photocatalysis: present situation and future approaches. C.R. Chimie, 9, 750-760.

  • 9. Kubacka, A., Fuertr, A., Martinez-Arias, A., & Fernandez-Garcia, M. (2007). Nanosized Ti-V mixed oxides: Effect of doping level in the photo-catalytic degradation of toluene using sunlight-type excitation. Appl.Catalysis, B: Environmental, 74, 26-33.

  • 10. Ohtani, B. (2010). Photocatalysis A to Z - what we know and what we do not know in a scientific sense. J. Photochem. Photobiol., C: Photochemistry Reviews, (11), 157-178.

  • 11. Monty, C.J.A. (2010). Characterization and properties of nanophases prepared by solar physical vapor deposition (SPVD) in the solar reactor heliotron. Arabian J. Sci. Eng.,35 (1C), 93-116.

  • 12. Xu,J., Ao, Y., Fu, D., & Yuan, Ch. (2008). A simple route for the preparation of Eu, Ncodoped TiO2 nanoparticles with enhanced visible light-induced photocatalytic activity. J. Colloid Interface Sci., 328, 447-451.

  • 13. Sppur R.A., & Myers, H. (1957). Quantitative analysis of anatase-rutile mixtures with an X-ray diffraction. Anal..Chem., 29(5), 760-762.

  • 14. Lojkowski, W., Gedanken, A., Grzanka, E., Opalinska, A., Strachowski, T., et al. (2009). Solvothermal synthesis of nanocrystalline zinc oxide doped with Mn2+, Ni2+, Co2+, and Cr3+ ions. J. Nanopart. Res., (11), 1991-2002.

  • 15. Hanaor, D.A.H., & Sorrell, C.C. (2011) Rewiew of anatase to rutile phase transformation. J. Mater Sci., 46, 855-874.


Journal + Issues