Chromophore Poling in Thin Films of Organic Glasses. 2. Two-Electrode Corona Discharge Setup

O. Vilitis 1 , I. Muzikante 1 , M. Rutkis 1 , and A. Vembris 1
  • 1 Institute of Solid State Physics, University of Latvia, 8 Ķengaraga Str., Riga, LV-1063, LATVIA

Chromophore Poling in Thin Films of Organic Glasses. 2. Two-Electrode Corona Discharge Setup

In Part 1 of the article we provided description of the corona discharge physics and overview of the methods used for corona poling in thin organic films. Subsequent sections describe comparatively simple technical methods for poling the organic nonlinear optical polymers using a two-electrode (point-to-plate or wire-to-plate) technique. The polarization build-up was studied by the DC positive corona method for poling the nonlinear optical (NLO) polymers. The experimental setup provides the corona discharge current from 0.5 μA up to 3 μA by applying 3 kV - 12 kV voltage to the corona electrode and makes possible selection among the types of corona electrodes (needle, multi-needle, wire, etc.). The results of experimental testing of the poling setup show that at fixed optimal operational parameters of poling - the sample orientation temperature and the discharge current - the corona charging of polymeric materials can successfully be performed applying the two-electrode technique. To study the dynamics of both poling and charge transport processes the three-electrode charging system - a corona triode - should be applied.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Fedosov, S.N., & Sergeeva, A.E. (2002). Corona poling of ferroelectric and nonlinear optical polymers. Moldavian J. Phys. Sci., (2), 28-31.

  • Giacometti, J.A., Fedosov, S., & Costa, M.M. (1999). Corona charging of polymers: Recent advances on constant current charging. Brazilian J. Phys., 29 (2), 269-279.

  • Fedosov, S.N., Sergeeva, A.E., Giacometti, F.A., & Polischuk S.G. (2002). Switching of polarization and relaxation phenomena in corona poled ferroelectric polymers Physics and Chemistry of Solid State, 3, 413-417.

  • Vilitis, O., Fonavs, E., & Rutkis, M. (2011). Chromofore poling in thin films of organic glasses. 1. Overview of corona discharge application. Latv. J. Phys. Tec. Sci., 6, 53-65

  • Rutkis, M., Vembris, A., Zauls, V., Tokmakovs, A., & Fonavs, E. (2006). Novel second-order nonlinear optical polymer materials containing indandione derivatives as cromophores, SPIE Proceedings, Organic Optoelectronics and Photonics (eds. P.L. Heremans, M. Muccini, & A. Meulenkamp), 6192, 6192Q.

  • Rutkis, M., Vembris, A., Zauls, V., Tokmakovs, A., Fonavs, E. (2007). Non-linear optical properties of polymer systems with poled indandione derivatives as chromophore. Nonlinear optics, quantum optics, 7 (1/3), 31-42.

  • Vembris A., Rutkis M., & Laizane E., (2008). Effect of corona poling and thermocycling sequence on NLO properties of the guest-host system Molecular Crystals and Liquid Crystals, 485, 873-880.

  • Vembris, A., Rutkis, M., Zauls, V., & Laizane, E. (2008). Stability of the NLO Polymers - Optical Induced De-poling of the DMABI Molecules in sPMMA. Matrix. Thin Solid Films, 516 (24), 8937-8943.

  • Jecs, E., Kreicberga, J., Kampars, V., Jurgis, A., & Rutkis, M. (2009). Novel azobenzene precursors for NLO active polyuretanes: Synthesis, quantum chemical and experimental characterization. Optical Materials, 31, 1600-1607.

  • Rutkis, M., Tokmakovs, A., Jecs, E., Kreicberga, J., Kampars, V., & Kokars, V. (2010). Indandione based binary chromophore supramolecular systems as a NLO active polymer composites. Optical Materials, 32, 796-802.

  • Dalton, L., Harper, A., Ren, A., Wang, F., Todorova, G., Chen, J., Zhang, C., & Lee, M. (1999). Ind. Eng. Chem. Res., 38, 8-33.


Journal + Issues