The δ18O and δD isoscapes of recent groundwater in Poland

Open access


Considering the country’s development and quality of life, recognition of the water cycle mechanism is of great importance. A significant contribution to this comes from the isotopic composition of particular elements of the water cycle. However, a weak point is that in Poland only one element of the water cycle, precipitation, is sampled and measured over more than 312 thousands km2 at a single station. It is therefore necessary to seek extension of or alternatives for these rare data. Such an alternative is the sampling of groundwater containing tritium in the national monitoring network of groundwater bodies that is maintained by the Polish Geological Institute. Based on such data we have constructed δ18O and δD isoscapes (i.e., maps of δ18O and δD values) of recent groundwater. These data provide spatial distribution of δ18O and δD values which can be used as input to hydrogeological models.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aggarwal P.K. Araguas-Araguas I.J. Groening M. Kulkarni K.M. Kurttas T. Newman B. & Vitvar T. 2010. Global hydrologic isotope data and data networks. [In:] J.B. West G.J. Bowen T.E. Dawson & K.P. Tu (Eds): Isoscapes: Understanding movement pattern and process on Earth through isotope mapping. Springer 33–51.

  • Barnes C.J. & Allison G.B. 1988. Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen. Journal of Hydrology 100 146–176.

  • Bowen G.J. Ehleringer J.P. Chesson L.A. Stange E. & Cerling T.E. 2007. Stable isotope ratio of tap water in the contigious USA. Water Resources Research 43 3419.

  • Bowen G.J. Kennedy C.D. Zhongfang L. & Stalker J. 2011. Water balance model for mean annual hydrogen and oxygen isotope distributions in surface waters of the contiguous United States. Journal of Geophysical Research 116 G04011.

  • Coplen T. & Wassenaar L.I. 2015. LIMS for Lasers 2015 for achieving long-term accuracy and precision of δ2H δ17O and δ18O of waters using laser absorption spectrometry. Rapid Communications in Mass Spectrometry 29 2122–2130.

  • Craig H. 1961. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133 1702–1703.

  • Darling W.G. Bath A.H. & Talbot J.C. 2003. The O & H stable isotope composition of the fresh waters in the British Isles. 2. Surface waters and groundwater. Hydrology and Earth System Science 7 183–195.

  • D’Obyrn K. Grabczak J. & Zuber A. 1997. Mapy składów izotopowych infiltracji holoceńskiej na obszarze Polski [Maps of isotopic composition of the Holocene meteoric waters in Poland]. [In:] J. Górski & E. Liszkowska (Eds): Współczesne Problemy Hydrogeologii VIII [Contemporary Problems of Hydrogeology VIII]. WIND Poznań 333–335.

  • Duliński M. Florkowski T. Grabczak J. & Różański K. 2001. 25 lat systematycznych pomiarów składu izotopowego opadów na terenie Polski [Twenty-five years of systematic measurements of isotopic composition of precipitation in Poland]. Przegląd Geologiczny 49 250–256.

  • Duliński M. Różański K. Gorczyca Z. & Marzec M. 2017. Określanie wieku wód podziemnych z wykorzystaniem izotopów środowiska – uwagi metodyczne [Determination of groundwater age using environmental isotopes – methodological remarks]. Przegląd Geologiczny 65 1049–1054.

  • IAEA 2018. The International Atomic Energy Agency Water Resources Programme Global network of isotopes in precipitation Vienna. [Online] Access: 2018.

  • Harms P.A. Visser A. Moran J.E & Esser B.K. 2016. Distribution of tritium in precipitation and surface water in California. Journal of Hydrology 534 63–72.

  • Kendall C. & Coplen T.B. 2001. Distribution of oxygen-18 in river waters across the United States. Hydrological Processes 15 1363–1393.

  • Liu Z. Bowen G.J. & Walker J.M. 2010. Precipitation isotope gradients reflect atmospheric circulation over the conterminous USA. Journal of Geophysical Research 115 D22120.

  • Longinelli A. Anglesio E. Flora O. Iacumin P. & Selmo E. 2006. Isotopic composition of precipitation in Northern Italy: Reverse effect of anomalous climatic events. Journal of Hydrology 329 471–476.

  • Longinelli A. & Selmo E. 2003. Isotopic composition of precipitation in Italy: a first overall map. Journal of Hydrology 270 75–88.

  • Nowicki Z. Leśniak P.M. & Wilamowski A. 2016. Średni czas pobytu wód podziemnych w zlewniach Wisły i Narwi na podstawie oznaczeń trytu [Mean residence time of groundwater in Wisła and Narew watershed based on tritium determinations]. Przegląd Geologiczny 64 545–551.

  • Raidla V. Kern Z. Parn J. & Babre A. 2016. δ18O isoscape for the shallow groundwater in the Baltic Artesian Basin. Journal of Hydrology 542 254–267.

  • Regan S. Goodhue R. Naughton O. & Hynd P. 2017. Geospatial drivers of the groundwater δ18O isoscape in a temperate maritime climate (Republic of Ireland). Journal of Hydrology 554 173–186.

  • Różański K. 1985. Deuterium and 18O in European groundwaters – links to atmospheric circulation in the past. Chemical Geology 52 349–363.

  • Różański K. Araguas-Araguas L. & Gonfiantini R. 1993. Isotopic patterns in modern global precipitation. Geophysical Monograph 78 1–36.

  • Różański K. Johnsen S.J. Schotterer U. & Thompson L.G. 1997. Reconstruction of past climates from stable isotope records of palaeo-precipitation preserved in continental archives. Hydrology Science Journal 42 725–745.

  • Sonntag C. Christmann D. & Műnnich K.O. 1985. Laboratory and field experiments in infiltration and evaporation of soils by means of deuterium and oxygen-18. [In:] Stable and radioactive isotopes in the study of unsaturated zone. IAEA TECHDOC-357 IAEA Vienna 145–159.

  • Stumpp C. Klaus J. & Stichler W. 2014. Analysis of long term stable isotopic composition in German precipitation. Journal of Hydrology 517 351–361.

  • West A.G. February E.C. & Bowen G.J. 2014. Spatial analysis of hydrogen and oxygen stable isotopes (isoscapes) in groundwater and tap water across South Africa. Journal of Geochemical Exploration 145 213–222.

Journal information
Impact Factor

CiteScore 2018: 1.19

SCImago Journal Rank (SJR) 2018: 0.306
Source Normalized Impact per Paper (SNIP) 2018: 0.937

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 16 16 14
PDF Downloads 11 11 10