Radiocarbon dating of groundwater from a PZ-2 piezometer located in the foreground of Wieliczka Salt Mine, Poland

Open access


A comparison of two methods of radiocarbon age determination of groundwater is presented. The simplest Pearson model and the “user-defined” option of the NETPATH program were considered. Both methods were used to determine the age of water from a PZ-2 piezometer that is situated in the foreground of chamber Z-32 in Wieliczka Salt Mine. Results of these calculations clearly demonstrate that 14C ages obtained by the Pearson model can be significantly overestimated in comparison with those determined by the NETPATH code. Without additional data, such as the stable isotope composition of the water, conclusions on the age of the groundwater based solely on the Pearson model may be highly inadequate.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • d’Obyrn K. & Postawa A. 2013. Selected hydrochemical ratios of waters from inflows at the level VI in “Wieliczka” salt mine. Geology Geophysics and Environment 39 163–174.

  • d’Obyrn K. & Postawa A. 2014. Assessment of the qualitative and quantitative stability of “Wieliczka” Salt Mine (Poland) brines and of their possible use for medical purposes. Geological Quarterly 58 459–464.

  • d’Obyrn K. & Rajchel L. 2014. Balneologiczne walory Kopalni Soli „Wieliczka” [Balneological values of the Wieliczka Salt Mine]. Acta Balneologica 61 220–223.

  • Duliński M. Rozanski K. Kuc T. Gorczyca Z. Kania J. & Kapusta M. 2013. Evolution of radiocarbon in a sandy aquifer cross large temporal and spatial scales: case study from southern Poland. Radiocarbon 55 905–919.

  • Garrels R.M. 1960. Mineral Equilibria at Low Temperature and Pressure. Harper & Brothers Publishers New York 254 pp.

  • Gorczyca Z. 2003. Badania zmienności składu izotopowego strumienia glebowego dwutlenku węgla do atmosfery na obszarze Polski południowej [Variability of the isotope composition of the soil CO2 flux to the atmosphere in the Southern Poland]. University of Science and Technology Kraków 169 pp.

  • Han L.F. & Plummer L.N. 2016. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in ground-water. Earth-Science Reviews 152 119–142.

  • Kapusta M. 2012. Datowanie wód podziemnych z wykorzystaniem radiowęgla – zagadnienia metodyczne i zastosowanie [Dating groundwater using radiocarbon – methodological issues and application]. University of Science and Technology Kraków 88 pp.

  • Libby W.F. 1946. Atmospheric helium three and radio-carbon from cosmic radiation. Physical Review 69 671–672.

  • Pearson F.J.Jr. 1965. Use of C13/C12 ratios to correct radiocarbon ages of materials initially diluted by limestone. Proceedings of the 6th International Conference on Radiocarbon and Tritium Dating Pullman USA 357–366.

  • Plummer L.N. Prestemon E.C. & Parkhurst D.L. 1991. An interactive code (NETPATH) for modeling NET geo-chemical reactions along a flow PATH. Water-Resources Investigations Report 91-4078 U.S. Geological Survey Reston 130 pp.

  • Witczak S. d’Obyrn K. Duliński M. & Rajchel L. 2016. Warunki zasilania wód leczniczych w Kopalni Soli Wieliczka [Conditions of medicinal water supply in the Wieliczka Salt Mine]. Biuletyn Państwowego Instytutu Geologicznego 466 313–322.

  • Zuber A. & Rajchel L. 2007. Geneza wód mineralnych Matecznego Kraków [Origin of mineral waters in Kraków-Mateczny]. [In:] A. Szczepański E. Kmiecik & A. Żurek (Eds): Współczesne problemy hydrogeologii XIII [Contemporary Problems of Hydrogeology XIII]. University of Science and Technology Kraków 995–1002.

Journal information
Impact Factor

CiteScore 2018: 1.19

SCImago Journal Rank (SJR) 2018: 0.306
Source Normalized Impact per Paper (SNIP) 2018: 0.937

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 17
PDF Downloads 15 15 13