The siliciclastics/carbonates shift in the Jurassic of the Western Caucasus (central northern Neo-Tethys): reconsidering research over the last 50 years

Open access


A chain of carbonate platforms evolved in the northern Neo-Tethys during the Late Jurassic, but current knowledge remains incomplete as long as data from several larger regions, such as the Western Caucasus, are not included. In order to fill this gap, it is here suggested to reconsider the information accumulated chiefly during Soviet times. Although these data are too general, they still matter with regard to some regional characteristics and tentative interpretations. Available data on the spatio-temporal distribution of Bajocian-Callovian sedimentary rocks are summarised in a novel way which permits documentation of depositional trends at six representative localities in the Western Caucasus. The extent of the carbonate platform increased at two localities since the Late Callovian and at a third since the Middle Oxfordian. Three additional sites were characterised either by non-deposition or deep-marine sedimentation. The onset of carbonate platform development marked a remarkable shift from chiefly siliciclastic to carbonate deposition, although this event was not sudden everywhere. The Bathonian pulse of tectonic activity, coupled with the eustatic sea level rise, allowed shelves to expand during the Callovian-Oxfordian, with a reduction in siliciclastic input from islands and sea-water that became well oxygenated and warmer. These conditions were conducive to biogenic carbonate production, allowing the carbonate platform to expand subsequently.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Adamia S. Alania V. Chabukiani A. Kutelia Z. & Sadradze N. 2011. Great Caucasus (Cavcasioni): A Long-lived North-Tethyan Back-Arc Basin. Turkish Journal of Earth Sciences 20 611-628.

  • Betzler C. Lindhorst S. Eberli G.P. Lüdmann T. Möbius J. Ludwig J. Schutter I. Wunsch M. Reijmer J.J.G. & Hübscher C. 2014. Periplatform drift: The combined result of contour current and off-bank transport along carbonate platforms. Geology 42 871-874.

  • Boiko N.I. Sedletskij V.I. & Shvedov V.N. 1977. Litologo-fatsial’nye osobennosti i uslovija obrazovanija karbonatnykh otlozhenij oksforda v Zapadnom Predkavkaz’e. Litologija i poleznye iskopaemye 1 137-144 (in Russian).

  • Bosence D. 2005. A genetic classification of carbonate platforms based on their basinal and tectonic settings in the Cenozoic. Sedimentary Geology 175 49-72.

  • Brandano M. Cornacchia I. & Tomassetti L. 2017. Global versus regional influence on the carbonate factories of Oligo-Miocene carbonate platforms in the Mediterranean area. Marine and Petroleum Geology 87 188-202.

  • Carmeille M. Bourillot R. Brunet M.-F. Pellenard P. Fürsich F.T. Schnyder J. Barrier E. Blanpied C. & Sidorova I. 2018. Architecture and sedimentary evolution of the southwestern Gissar carbonate platform (Uzbekistan) during the Middle-Late Jurassic. Marine and Petroleum Geology 97 437-465.

  • Clavel B. Charollais J. Busnardo R. Granier B. Conrad M. Desjacques P. & Metzger J. 2014. La plate-forme carbonatée urgonienne (Hauterivien supérieur – Aptien inférieur) dans le Sud-Est de la France et en Suisse: synthèse. Archives des Sciences 67 1-100.

  • Clavel B. Conrad M.A. Busnardo R. Charollais J. & Granier B. 2013. Mapping the rise and demise of Urgonian platforms (Late Hauterivian – Early Aptian) in southeastern France and the Swiss Jura. Cretaceous Research 39 29-46.

  • Fralick P. & Riding R. 2015. Steep Rock Lake: Sedimentology and geochemistry of an Archean carbonate platform. Earth-Science Reviews 151 132-175.

  • Frau C. Tendil A.J.-B. Lanteaume C. Masse J.-P. Pictet A. Bulot L.G. Luber T.L. Redfern J. Borgomano J.R. Léonide Ph. Fournier F. & Massonnat G. 2018. Late Barremian–early Aptian ammonite bio-events from the Urgonian-type series of Provence southeast France: Regional stratigraphic correlations and implications for dating the peri-Vocontian carbonate platforms. Cretaceous Research 90 222-253.

  • Golonka J. 2004. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 381 235-273.

  • Guo L. Vincent S.J. & Lavrishchev V. 2011. Upper Jurassic Reefs from the Russian Western Caucasus: Implications for the Eastern Black Sea. Turkish Journal of Earth Sciences 20 629-653.

  • Haq B.U. 2018. Jurassic Sea-Level Variations: A Reappraisal. GSA Today 28 4-10.

  • Husinec A. & Jelaska V. 2006. Relative sea-level changes recorded on an isolated carbonate platform: Tithonian to Cenomanian succession southern Croatia. Journal of Sedimentary Research 76 1120-1136.

  • Jasamanov N.A. 1978. Landshaftno-klimatitchieskije uslovija jury mela i paleogena Juga SSSR [Landscape-climatic conditions of the Jurassic the Creaceous and the Paleogene in the South of the USSR]. Moskva (Nedra) 224 pp. (in Russian).

  • Kuznetsov V.G. 1993. Late Jurassic - Early Cretaceous carbonate platform in the northern Caucasus and Precaucasus. American Association of Petroleum Geology Memoirs 56 455-463.

  • Lüdmann T. Kalvelage C. Betzler C. Fürstenau J. & Hübscher C. 2013. The Maldives a giant isolated carbonate platform dominated by bottom currents. Marine and Petroleum Geology 43 326-340.

  • Matthews K.J. Maloney K.T. Zahirovic S. Williams S.E. Seton M. & Müller R.D. 2016. Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change 146 226-250.

  • McCann T. Chalot-Prat F. & Saintot A. 2010. The Early Mesozoic evolution of the Western Greater Caucasus (Russia): Triassic-Jurassic sedimentary and magmatic history. Geological Society London Special Publications 340 181-238.

  • Morsilli M. Hairabian A. Borgomano J. Nardon S. Adams E. & Gartner G.B. 2017. The Apulia Carbonate Platform - Gargano Promontory Italy (Upper Jurassic–Eocene). American Association of Petroleum Geology Bulletin 101 523–531.

  • Mostardini F. & Merlini S. 1986. Appennino centro-meridionale: sezioni geologiche e proposta di modello strutturale. Memorie della Societa Geologica Italiana 35 177-202.

  • Ogg J.G. Ogg G.M. & Gradstein F.M. 2016. A Concise Geologic Time Scale 2016. Amsterdam (Elsevier) 234 pp.

  • Pomar L. 2001. Types of carbonate platforms: A genetic approach. Basin Research 13 313-334.

  • Pomar L. & Haq B.U. 2014. Decoding depositional sequences in carbonate systems: Concepts vs experience. Global and Planetary Change 146 190-225.

  • Read J.F. 1982. Carbonate platforms of passive (extensional) continental margins: Types characteristics and evolution. Tectonophysics 81 195-212.

  • Read J.F. 1985. Carbonate platform facies models. American Association of Petroleum Geologists Bulletin 69 1-21. Rolland Y. 2017. Caucasus collisional history: Review of data from East Anatolia to West Iran. Gondwana Research 49 130-136.

  • Rostovtsev K.O. Agaev V.B. Azarian N.R. Babaev R.G. Besnosov N.V. Hassanov N.A. Zesashvili V.I. Lomize M.G. Paitschadze T.A. Panov D.I. Prosorovskaya E.L. Sakharov A.S. Thodria V.A. Topchishvili M.V. Abdulkasumzade M.R. Avanesian A.S. Belenkova V.S. Bendukidze N.S. Vuks V.Ya. Doludenko M.P. Kiritchkova A.I. Klikushin V.G. Krimholz G.Ya. Romanovskaya G.M. & Schevchenko T.V. 1992. Yura Kavkaza [Jurassic of the Caucasus]. St. Petersburg (Nauka) 192 pp. (in Russian).

  • Ruban D.A. 2006a. Taxonomic diversity dynamics of the Jurassic bivalves in the Caucasus: regional trends and recognition of global patterns. Palaeogeography Palaeo-climatology Palaeoecology 239 63-74.

  • Ruban D.A. 2006b. The Palaeogeographic Outlines of the Caucasus in the Jurassic: The Caucasian Sea and the Neotethys Ocean. Geološki anali Balkanskoga poluostrva 67 1-11.

  • Ruban D.A. 2008a. The Jurassic events in the Greater Caucasus basin (central Northern Neotethys) and the Neuquen basin (West Gondwana): A comparison. Re-vista de Asociación Geológica Argentina 63 766-775.

  • Ruban D.A. 2008b. Jurassic maximum flooding surfaces in the Greater Caucasus Basin (Northern Neo-Tethys). Central European Geology 51 99-112.

  • Ruban D.A. 2010a. Spatio-temporal patterns of the major Bathonian (Middle Jurassic) hiatus in the Greater Caucasus Basin (Northern Neo-Tethys Ocean) and its enigmatic origin. GeoActa 9 21-30.

  • Ruban D.A. 2010b. Diversity dynamics of Bajocian (Middle Jurassic) ammonites and transgressions/regressions in the Caucasian Sea (northern Neo-Tethys Ocean): A case high-resolution test of probable dependence. Palaeogeography Palaeoclimatology Palaeoecology 297 576-583.

  • Saintot A. Brunet M.-F. Yakovlev F. Sébrier M. Stephenson R. Ershov A. Chalot-Prat F. & McCann T. 2006. The Mesozoic-Cenozoic tectonic evolution of the Greater Caucasus. Geological Society London Memoirs 32 277-289.

  • Tendil A.J.-B. Frau C. Léonide P. Fournier F. Borgomano J.R. Lanteaume C. Masse J.-P. Massonnat G. & Rolando J.-P. 2018. Platform-to-basin anatomy of a Barremian–Aptian Tethyan carbonate system: New insights into the regional to global factors controlling the stratigraphic architecture of the Urgonian Provence platform (southeast France). Cretaceous Research 91 382-411.

  • Williams H.D. Burgess P.M. Wright V.P. Porta G.D. & Granjeon D. 2011. Investigating carbonate platform types: Multiple controls and a continuum of geometries. Journal of Sedimentary Research 81 18-37.

Journal information
Impact Factor

CiteScore 2018: 1.19

SCImago Journal Rank (SJR) 2018: 0.306
Source Normalized Impact per Paper (SNIP) 2018: 0.937

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 33 33 9
PDF Downloads 29 29 4