Modelling groundwater flow and nitrate transport: a case study of an area used for precision agriculture in the middle part of the Vistula River valley, Poland

Open access

Abstract

The present paper discusses studies related to the preparation of a hydrogeological model of groundwater flow and nitrate transport in an area where a precision farming system is applied. Components of water balance were determined using the UnSat Suite Plus software (HELP model), while the average infiltration rate calculated for the study area equalled 20 per cent. The Visual MODFLOW software was used for the purpose of modelling in the saturated zone. Hydrogeological parameters of the model layers, inclusive of hydraulic conductivity, were defined on the basis of results of column tests that were carried out under laboratory conditions (column experiment). Related to the dose of mineral nitrogen used in precision fertilisation (80 kg N/ha), scenarios of the spread of nitrates in the soil-water environment were worked out. The absolute residual mean error calculated for nitrate concentrations obtained from laboratory and modelling studies equalled 0.188 mg/L, the standard error of the estimate equalling 0.116 mg/L. Results obtained were shown graphically in the form of hydroisohypse maps and nitrate isolines. Conclusions were drawn regarding the possibility of using numerical modelling techniques in predicting transport and fate of nitrates from fertilisers applied in precision agriculture systems.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aljazzar T. & Al-Qinna M. 2016. Assessment of nitrate transport parameters using the advection-diffusion cell. Environmental Science and Pollution Research 23 23145–23157.

  • Almasri M.N. & Kaluarachchi J.J. 2007. Modeling nitrate contamination of groundwater in agricultural watersheds. Journal of Hydrology 343 211–229.

  • ASTM D5084-00 2001. Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter. ASTM International West Conshohocken.

  • Batu V. 1998. Aquifer Hydraulics: A Comprehensive Guide to Hydrogeologic Data Analysis. John Wiley & Sons New York 58 pp.

  • Baum R. Wojszczuk K. & Wawrzynowicz J. 2012. Miejsce i rola rolnictwa precyzyjnego w koncepcji zrównoważonego rozwoju gospodarstw rolnych [Place and role of precision agriculture at concept of sustainable development of farms]. Ekonomia i Środowisko 1 71–83.

  • Bieciński P.A. 1960. Nowyj metod opredelenija koeffi-cienta wodootdaczi wodonosnych płastow [A new method for determining the storage coefficient of aquifers]. Gidrotehnika i Melioracija 6 15–20.

  • Bujakowski F. & Falkowski T. 2017. Wykorzystanie lotniczego skaningu laserowego do oceny warunków przepływu wód w osadach równi zalewowej [The use of airborne laser scanning in the assessment of groundwater flow conditions in floodplain deposits]. Przegląd Geologiczny 65 443–449.

  • Cesnulevicius A. 2011. Method for evaluation water budget in small river catchments. [In:] Cygas D. & Froehner K.D. (Eds): Proceedings of the 8th International Conference on Environmental Engineering. Vilnius Gediminas Technical University Vilnius 538–542.

  • Diamond J. & Shanley T. 2003. Infiltration rate assessment of some major soils. Irish Geography 36 32–46.

  • Duda R. Witczak S. & Żurek A. 2011. Mapa wrażliwości wód podziemnych Polski na zanieczyszczenie 1:500 000. Metodyka i objaśnienia tekstowe [Map of groundwater vurnerability for pollution in Poland. Scale 1:500000. Methodology and explanation text]. Wyd. AGH Kraków 91–97.

  • Falkowska E. & Falkowski T. 2015. Trace metals distribution pattern in floodplain sediments of a lowland river in relation to contemporary valley bottom morphodynamics. Earth Surface Processes and Landforms 40 876–887.

  • Frind E. Duynisveld W. Strebel O. & Boettcher O. 1990. Modeling of multicomponent transport with microbial transformation in ground water. The Fuhrberg case. Water Resources Research 26 1707–1719.

  • Gworek B. Dmuchowski W. Koda E. Marecka M. Baczewska A.H. Brągoszewska P. Sieczka A. & Osiński P. 2016. Impact of the Municipal Solid Waste Łubna Landfill on Environmental Pollution by Heavy Metals. Water 8 470.

  • Herbert M. & Kovar K. (Eds) 1998. Groundwater Quality: Remediation and Protection. IAHS Wallingford 11–18.

  • Koda E. 2012. Influence of Vertical Barrier Surrounding Old Sanitary Landfill on Eliminating Transport of Pollutants on the Basis of Numerical Modeling and Monitoring Results. Polish Journal of Environmental Studies 21 929–935.

  • Koda E. Sieczka A. & Osiński P. 2016. Ammonium concentration and migration in groundwater in the vicinity of waste management site located in the neighborhood of protected areas of Warsaw Poland. Sustainability 8 1253.

  • Kondracki J. 2002. Geografia regionalna Polski [Regional geography of Poland]. Wydawnictwo Naukowe PWN Warszawa 188–194.

  • Kozlovsky E.A. (Ed.) 1988. Geology and the Environment. Vol. I Water Management and the Geoenvironment. UNESCO Paris UNEP Nairobi 148–155.

  • Macioszczyk A. (Ed.) 2006. Podstawy hydrogeologii stosowanej [Introduction to applied hydrogeology]. Wydawnictwo Naukowe PWN Warszawa 184 pp.

  • Marciniak M. Małoszewski P. & Okońska M. 2006. Wpływ efektu skali eksperymentu kolumnowego na identyfikację parametrów migracji znaczników metodą rozwiązań analitycznych i modelowania numerycznego [The influence of column experiment scale effect on the tracer migration parameter identification by the methods of analytical solutions and numerical modelling]. Geologos 10 167–187.

  • Ritter L. Solomon K. Sibley P. Hall K. Keen P. Mattu G. & Linton B. 2002. Sources pathways and relative risks of contaminants in surface water and groundwater: A perspective prepared for the Walkerton Inquiry. Journal of Toxicology and Environmental Health Part A 65 1–142.

  • Rozporządzenie Ministra Środowiska z dnia 21 grudnia 2015 r. w sprawie kryteriów i sposobu oceny stanu jednolitych części wód podziemnych [Regulation of the Minister of Environment dated 21 December 2015 on the criteria and method of evaluating the underground water condition] 2016. Dz. U. 2016 poz. 85.

  • Sarnacka Z. 1976. Objaśnienia do Szczegółowej Mapy Geologicznej Polski 1:50 000 arkusz Piaseczno (560) [Explanations for the Detailed Geological Map of Poland 1:50000 Piaseczno sheet (560)]. Wyd. Geologiczne Warszawa 41–42.

  • Saxton K.E. & Willey P.H. 2006. The SPAW model for agricultural field and pond hydrologic simulation. [In:] Singh V.P. & Frevert D.K. (Eds): Watershed models. CRC Press Boca Raton 401–435.

  • Sieczka A. & Koda E. 2016a. Kinetic and equilibrium studies of sorption of ammonium in the soil-water environment in agricultural areas of Central Poland. Applied Sciences 6 269.

  • Sieczka A. & Koda E. 2016b. Identification of Nitrogen Compounds Sorption Parameters in the Soil-Water Environment of a Column Experiment. Ochrona Środowiska 38 29–34.

  • Sieczka A. Bujakowski F. Falkowski T. & Koda E. 2018. Morphogenesis of a Floodplain as a Criterion for Assessing the Susceptibility to Water Pollution in an Agriculturally Rich Valley of a Lowland River. Water 10 399.

  • Toride N. Leij F.J. & van Genuchten M.T. 1999. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments. Version 2.1. Research Report No. 137. USDA-ARS U.S. Salinity Laboratory Riverside.

  • Uffink G.J.M. 2003. Determination of Denitrification Parameters in Deep Groundwater. A Pilot Study for Several Pumping Stations in the Netherlands. RIVM Report 703717011. Rijksinstituut voor Volksgezondheid en Milieu RIVM Bilthoven.

  • Witczak W. Kania J. & Kmiecik E. 2013. Katalog wybranych fizycznych i chemicznych wskaźników zanieczyszczeń wód podziemnych i metod ich oznaczania [Guidebook on selected physical and chemical indicators of groundwater contamination and methods of their determination]. Inspekcja Ochrony Środowiska. Biblioteka Monitoringu Środowiska Warszawa 11–12.

  • Zhu C. & Anderson G. 2002. Environmental Applications of Geochemical Modeling. Cambridge University Press Cambridge 136–137.

Search
Journal information
Impact Factor


CiteScore 2018: 1.19

SCImago Journal Rank (SJR) 2018: 0.306
Source Normalized Impact per Paper (SNIP) 2018: 0.937


Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 173 132 5
PDF Downloads 117 84 6