Peat decomposition – shaping factors, significance in environmental studies and methods of determination; a literature review

Danuta Drzymulska 1
  • 1 Department of Botany, Institute of Biology, University in Białystok, K. Ciołkowskiego 1J, 15-245 Białystok, Poland.


A review of literature data on the degree of peat decomposition – an important parameter that yields data on environmental conditions during the peat-forming process, i.e., humidity of the mire surface, is presented. A decrease in the rate of peat decomposition indicates a rise of the ground water table. In the case of bogs, which receive exclusively atmospheric (meteoric) water, data on changes in the wetness of past mire surfaces could even be treated as data on past climates. Different factors shaping the process of peat decomposition are also discussed, such as humidity of the substratum and climatic conditions, as well as the chemical composition of peat-forming plants. Methods for the determination of the degree of peat decomposition are also outlined, maintaining the division into field and laboratory analyses. Among the latter are methods based on physical and chemical features of peat and microscopic methods. Comparisons of results obtained by different methods can occasionally be difficult, which may be ascribed to different experience of researchers or the chemically undefined nature of many analyses of humification.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aaby, B., 1976. Cyclic climatic variations in climate over the last 5500 years reflected in raised bogs. Nature 263, 281–284.

  • Aaby, B., 1986. Palaeoecological studies of mires. [In:] B.E. Berglund (Ed.): Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons, Chichester, 145–165.

  • Aaby, B. & Berglund B.E., 1986. Characterization of peat and lake deposits. [In:] B.E. Berglund (Ed.): Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons, Chichester, 231–246.

  • Barber, K.E., 1981. Peat stratigraphy and climatic change. Balkema, Rotterdam, 219 pp.

  • Barber, K., Dumayne-Peaty, L., Hughes, P., Mauquoy, D. & Scaife, R., 1998. Replicability and variability of the recent macrofossil and proxy-climate record from raised bogs: field stratigraphy and macrofossil data from Bolton Fell Moss and Walton Moss, Cumbria, England. Journal of Quaternary Science 13, 518–528.

  • Benner, R., Fogel, M. L., Sprague, E. K. & Hodson, R. E., 1987. Depletion of c in lignin and its implications for stable carbon isotope studies. Nature 329, 708–710.

  • Biester, H., Knorr, K.-H., Schellekens, J., Basler, A. & Y.-M. Hermanns, Y.-M., 2014. Comparison of different methods to determine the degree of peat decomposition in peat bogs. Biogeosciences 11, 2691–2707.

  • Birks, H.J.B. & Birks, H.H., 1980. Quaternary Palaeoecology. Edward Arnold, London, 289 pp.

  • Blackford, J.J., 1998. Holocene climatic variability in the North Atlantic region as shown by peat bog records. Fróδskaparrit 46, 155–162.

  • Blackford, J.J., 2000. Palaeoclimatic records from peat bogs. Trends in Ecology & Evolution 15, 193–198.

  • Blackford, J.J. & Chambers, F.M., 1991. Proxy records of climate from blanket mires: evidence for a Dark Age (1400 BP) climatic deterioration in the British Isles. The Holocene 1, 63–67.

  • Blackford, J.J. & Chambers, F.M., 1993. Determining the degree of peat decomposition in peat-based palaeoclimatic studies. International Peat Journal 5, 7–24.

  • Botch, M.S., 1978. Niekotoryje zakonomiernosti razlozjenija rastienij na bolotach kak osnova dinamiki bolot [Some regularities of plant decomposition in mires as a base for mire dynamics]. [In:] O.L. Liss (Ed.): Gienjezis i dinamika bolot [Origin and dynamics of mires]. Izdatielstwo Moskovskowo Uniwiersitjeta, Moskva, 18–24.

  • Botch, M.S. & Masing, V.V., 1979. Ekosistemy bolot SSSR [Mire ecosystems of the USSR]. Nauka, Leningrad, 187 pp.

  • Broder, T., Blodau, C., Biester, H. & Knorr, K.H., 2012. Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences 9, 1479–1491.

  • Caseldine, C.J., Baker, A., Charman, D.J. & Hendon, D., 2000. A comparative study of optical properties of NaOH peat extracts: implications for humification studies. The Holocene 10, 649–658.

  • Chambers, F.M., Barber, K.E., Maddy, D. & Brew, J., 1997. A 5500-year proxy-climate and vegetation record from blanket mire at talla moss, borders, Scotland. The Holocene 7, 391–399.

  • Charman, D. J., Hendon, D. & Packman, S., 1999. Multiproxy surface wetness records from replicate cores on an ombrotrophic mire: Implications for Holocene palaeoclimate records. Journal of Quaternary Science 14, 451–463.

  • Charman, D.J., Barber, K.E., Blaauw, M., Langdon, P.G., Mauquoy, D., Daley, T.J., Hughes, P.D.M. & Karofeld, E., 2009. Climate drivers for peatland palaeoclimate records. Quaternary Science Reviews 28, 1811–1818.

  • Chiverrell, R.C., 2001. A proxy record of late Holocene climate change from May Moss, northeast England. Journal of Quaternary Science 16, 9–29.

  • Clymo, R.S., 1984. The limits to peat bog growth. Philosophical Transactions of the Royal Society B 303, 605–654.

  • Coulson, J.C. & Butterfield, J., 1978. An investigation of biotoc factors determining the rates of plant decomposition on blanket bog. Journal of Ecology 66, 631–650.

  • Davydik, I.I., 1987. An approach to the determination of the state of decomposition pf peat and other organic substances. International Peat Journal 2, 19–27.

  • Drzymulska D. & Zieliński, P., 2013. Developmental changes in the historical and present-day trophic status of brown water lakes. Are humic water bodies a uniform aquatic ecosystem? Wetlands 33, 909–919.

  • Drzymulska D., Kłosowski, S., Pawlikowski, P. & Zieliński, P. & Jabłońska, E. 2013. The historical development of vegetation of foreshore mires beside humic lakes; different successional pathways under various environmental conditions. Hydrobiologia 703, 15–31.

  • Ellis, C.J. & Tallis, J., 2000. Climatic control of blanket mire development at Kentra Moss, north-west Scotland. Journal of Ecology 88, 869–889.

  • Frazier, B.E. & Lee, G.B. 1971. Characteristics and classification of three Wisconsin histosols. Soil Science Society of America Proceedings 35, 776–780.

  • Gawlik, J., 1992. Wpływ stopnia rozkładu torfu i stanu jego zagęszczenia na właściwości wodno-retencyjne utworów torfowych [Effect of plant decomposition degree and its density on water-retention features of peat sediments]. Wydawnictwo IMUZ, Lublin – Falenty, 86 pp.

  • Grosse-Brauckmann, G., 1986. Analysis of vegetative plant macrofossils. [In:] B.E. Berglund (Ed.): Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons, Chichester, 591–618.

  • Grosse-Brauckmann, G., 1990. Ablagerungen der Moore. [In:] K. Göttlich (Ed.): Moor- und Torfkunde. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 145–165.

  • Grosse-Brauckmann, G., 1996. Classification of peat and peatbogs in Germany and its botanical, ecological and pedological foundations. [In:] G.W. Lüttig (Ed.): Peatlands Use – Present, Past and Future. Proceedings of the 10th International Peat Congress, Bremen, Vol. 2. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 21–38.

  • Hornibrook, E.R.C., Longstaffe, F.J., Fyfe, W.S. & Bloom, Y., 2000. Carbon-isotope ratios and carbon, nitrogen and sulfur abundances in flora and soil organic matter from a temperate-zone bog and marsh. Geochemical Journal 34, 237–245.

  • Jasnowski, M., 1957. Calliergon trifarium Kindb. w układzie stratygraficznym i florze torfowisk holoceńskich Polski [Calliergon trifarium Kindb. in startygraphy and flora of the Holocene mires of Poland]. Acta Societatis Botanicorum Poloniae 26, 701–718.

  • Jones, M.C., Peteet, D.M. & Sambrotto, R., 2010. Late-Glacial and Holocene δ15n and δ13c variation from a Kenai Peninsula, Alaska peatland. Palaeogeography Palaeoclimatology Palaeoecology 293, 132–143.

  • Klavins, M., Sire, J., Purmalis, O. & Melecis, V., 2008. Approaches to estimating humification indicators for peat. Mires and Peat 3, 1–15.

  • Kuhry, P. & Vitt, D.H., 1996. Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77, 271–275.

  • Lubliner-Mianowska, K., 1951. Wskazówki do badań torfu. Metody geobotaniczne, polowe i laboratoryjne [Guideline for peat studies. Geobotanical, field and laboratory methods]. Państwowe Wydawnictwo Techniczne, Katowice, 88 pp.

  • Maciak, F. & Liwski, S., 1979. Ćwiczenia z torfoznawstwa [Peat-science practice]. Skrypty SGGW, Akademii Rolniczej w Warszawie, Warszawa, 159 pp.

  • Maksimow, A., 1965. Torf i jego użytkowanie w rolnictwie [Peat and its agricultural use]. PWRiL, Warszawa, 395 pp.

  • Malmer, N. & Wallén, B., 2004. Input rates, decay losses and accumulation rates of carbon in bogs during the last millennium: Internal processes and environmental changes. The Holocene 14, 111–117.

  • Mathur, S.P. & Farnham, R.S., 1985. Geochemistry of humic substances in natural and cultivated peatlands. [In:] G.R. Aiken, D.M. McKnight, R.L. Wershaw & P. MacCarthy (Eds): Humic substances in soil, sediments and water. John Wiley & Sons, New York, 53–86.

  • Mauquoy, D. & Barber, K., 2002. Testing the sensitivity of the palaeoclimatic signal from ombrotrophic peat bogs in northern England and the Scottish Borders. Review of Palaeobotany and Palynology 119, 219–240.

  • Nilssen, E. & Vorren, K.D., 1991. Peat humification and climate history. Norsk Geologisk Tiddskrift 71, 215–217.

  • Obidowicz, A., 1975. Entstehung und Alter einiger Moore im nördlichen Teil der Hohen Tatra. Fragmenta Floristica et Geobotanica 21, 3, 289–466.

  • Obidowicz, A., 1990. Eine Pollenanalytische und Moorkundliche Studie zur Vegetationsgeschichte des Podhale-Gebietes (West-Karpaten). Acta Palaeobotanica 30, 147–219.

  • Oświt, J., 1977. Naturalne siedliska torfotwórcze jako podstawa wyróżniania jednostek przyrodniczych [Natural peat-forming habitats]. Roczniki Nauk Rolniczych Seria F 79, 29–50.

  • Oświt, J. & Żurek, S., 1981. Rekonstrukcja rozwoju zabagnień w pradolinie Biebrzy. Zeszyty Naukowe Akademii Rolniczej we Wrocławiu 134, 59–70.

  • Rydin, H. & Jeglum, J., 2008. The Biology of Peatlands. Oxford University Press, Oxford, 343 pp.

  • Skrzypek, G., Kałużny, A., Wojtuń, B. & Jędrysek, M.-O., 2007. The carbon stable isotopic composition of mosses: A record of temperature variation. Organic Geochemistry 38, 1770–1781.

  • Stanek, W. & Silc, T., 1977. Comparisons of four methods for determination of degree of peat humification (decomposition) with emphasis on the von Post method. Canadian Journal of Soil Sciences 57, 109–117.

  • Tobolski, K., 2000. Vademecum Geobotanicum. Przewodnik do oznaczania torfów i osadów jeziornych [Vademecum Geobotanicum. Manual for peat and lacustrine sediment recognising]. Wydawnictwo Naukowe PWN, Warszawa, 508 pp.

  • Troels-Smith, J., 1955. Karakterisering af løse jordarter [Characterization of loose soils]. Danmarks Geologiske Undersogelse IV, Reakke 3,10, 1–73.

  • Yeloff, D. & Mauquoy, D., 2006. The influence of vegetation composition on peat humification: Implications for palaeoclimatic studies. Boreas 35, 662–673.

  • van der Linden, M. & van Geel, B., 2006. Late Holocene climate change and human impact recorded in a south Swedish ombrotrophic peat bog. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 649–667.

  • Varlygin, P. D. & Minkina, C.I., 1949. Polevoj sposób opredelenija stepeni razlozienija torfa – syrca posredstvom mazkov [Field method of determination of peat decomposition degree by smears]. Torfjanaja Promyslennost 3, 21–23.

  • Żurek, S., Michczyńska, D.J. & Pazdur, A., 2002. Time record of palaeohydrologic changes in the development of mires during the Late Glacial and Holocene, North Podlasie Lowland and Holy Cross Mts. Geochronometria 21, 109–118.


Journal + Issues