Reconstruction of the pre-compactional thickness of the Zechstein Main Dolomite in northwest Poland

Open access

Abstract

Our reconstruction of the pre-compactional thickness of the Main Dolomite strata from the so-called Grotów Peninsula (northwest Poland) was based on macroscopic observations of drill cores from three wells: Mokrzec-1, Sieraków-4 and Międzychód-5. These wells are located in various palaeogeographical zones of the Main Dolomite and cored rocks represent a range of microfacies. The amount of compactional reduction in thickness of the Main Dolomite was estimated by summing the total heights (Wst) of all stylolites encountered in logs of these wells. For calculations, a generalised model of a drill core was developed, which embraced all types of stylolite seams present in the Main Dolomite succession studied. Also the method of stylolite dimensioning was demonstrated. The number of stylolites in the drill cores studied varied from 511 in the Sieraków-4 well to 1,534 in the Międzychód-5 well. In all cores studied low-amplitude macrostylolites predominated, but the reduction of thickness was controlled mostly by the low- and medium-amplitude macrostylolites. The largest number of stylolites was found in the grainstone/packstone microfacies. The turnout of stylolites depends of microfacies. The highest density of stylolites was documented in mudstones/wackestones (24 stylolites per metre of rock thickness) and the lowest in boundstones (14 stylolites per metre of rock thickness). The low-amplitude stylolites appear most frequently in the mudstone/wackestone microfacies (15 stylolites per metre of rock thickness); in grainstones/packstones, rudstones/floatstones and boundstones middle-amplitude stylolites are rare (3 stylolites per metre of rock thickness). The degree of compaction of the Main Dolomite succession studied varied from 6 to 10%; hence, its calculated initial thickness also varied in the wells studied: from 41.3 m in the Sieraków-4 well to 56.9 m in the Mokrzec-1 well and to 97.1 m in the Międzychód-5 well. The volumes of reservoir fluids expelled during compaction of 1 m3 of Main Dolomite carbonates were estimated as 56 l in the Sieraków-4 well, 90 l in the Mokrzec-1 well and 97 l in the Międzychód-5 well.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Agosta F. & Kirschner D.L. 2003. Fluid conduits in carbonate-hosted seismogenic normal faults of Central Italy. Journal of Geophysical Research 108 B4 1–13.

  • Agosta F. Alessandroni M. Tondi E. & Aydin A. 2009. Oblique normal faulting along the northern edge of the Majella anticline central Italy: inferences on hydrocarbon migration and accumulation. Journal of Structural Geology 31 674–690.

  • Agosta F. Alessandroni M. Antonellini M. Tondi E. & Giorgioni M. 2010. From fractures to flow: a field-based quantitative analysis of an outcropping carbonate reservoir. Tectonophysics 490 197–213.

  • Andrews L.M. & Railsbak L.B. 1997. Controls on stylolite development: morphologic lithologic and temporal evidence form bedding-parallel and transverse stylolites from the US Appalachians. Journal of Geology 105 59–73.

  • Aplin A.C. Yang Y.& Hansen S. 1995. Assessment of the compression coefficient of mudstones and its relationship with detailed lithology. Marine and Petroleum Geology 12 995–963.

  • Aydin A. 2000. Fractures faults and hydrocarbon entrapment migration and flow. Marine and Petroleum Geology 17 797–814.

  • Barrett P. J. 1964. Residual Seams and Cementation in Oligocene Shell Calcarenites Te Kuiti Group. Journal of Sedimentary Petrology 34 524–531.

  • Bathurst R.G.C.1975. Carbonate Sediments and their Diagenesis. Elsevier Amsterdam 658.

  • Bathurst R.G.C. 1984. The integration of pressure solution with mechanical compaction and cementation. In: Yahya F.A. (Ed.) Stylolites and associated phenomena. Relevance to Hydrocarbon Reservoirs. Abu Dhabi National. Reserves. Found. 41–55.

  • Bathurst R.G.C. 1987. Diagenetically enhanced bedding in argillaceous platform limestone: stratified cementation and selective compaction. Sedimentology 34 749–779.

  • Bathurst R.G.C. 1995. Burial diagenesis of limestones under simple overburden. Stylolites cementation and feedback: Bulletin de La Societe Geologique de France 166 181–192.

  • Ben-Itzhak L.L. Aharonov E. Toussaint R. & Sagy A. 2012. Upper bound on stylolite roughness as indicator for amount of dissolution. Earth and Planetary Science Letters 337–338 186–196.

  • Bonnetier E. Misbah C. Renard F. Toussaint R. & Gratier J. P. 2009. Does roughening of rock-fluid-rock interfaces emerge from a stress-induced instability? European Physical Journal B. 67 121–131.

  • Broichhausen H. Littke R. & Hantschel T. 2005. Mudstone compaction and its influence on overpressure generation elucidated by 3D case study in the North Sea. International Journal of Earth Sciences 94 956–978.

  • Brouste A. Renard F. Gratier J.P. & Schmittbuhl J. 2007. Variety of stylolites morphologies and statistical characterization of the amount of heterogeneities in the rock. Journal of Structural Geology 29 422–434.

  • Bushinskiy G.I. 1961. Stylolites. Jzvestiya Akademia Nauk S.S.S.R. Serie Correlación Geológica 8 31–46.

  • Buxton T.M. & Sibley D.F. 1981. Pressure solution features in a shallow buried limestone. Journal of Sedimentary Petrology 51 19–26.

  • Choquette P.W. & James N.P. 1990. Limestones – The Burial Diagenetic Environment. Geoscience Canada 75–112.

  • Clari P. & Martire L. 1996. Interplay of cementation mechanical compaction and chemical compaction in nodular limestones of the Rosso Ammonitico Veronese (middle-upper Jurassic northeastern Italy). Journal of Sedimentary Research 66 447–458.

  • Conybeare C.E.B. 1949. Stylolites in Pre-Cambrian quartzite. Journal of Geology 57 83–85.

  • Coogan A.H. 1970. Measurement of compaction in oolitic grainstone. Journal of Sedimentary Petrology 40 921–929.

  • Czekański E. Kwolek K. & Mikołajewski Z. 2010. Złoża węglowodorów w utworach cechsztyńskiego dolomitu głównego (Ca2) na bloku Gorzowa [Hydrocarbon fields in the Zechstein Main Dolomite (Ca2) of the Gorzów Block (NW Poland)]. Przegląd Geologiczny 58 695–703.

  • Dadlez R. & Jaroszewski W. 1994. Tektonika [Tectonics] Wydawnictwo Naukowe PWN Warszawa 743.

  • Dunham R.J. 1962. Classification of carbonare rocks according to depositional texture. In: Ham W.E. (Ed.): Classification of carbonate rocks. A Symposium of American Associaction of Petroleum Geology 1 108–121.

  • Dunnington H.V. 1967. Aspects of diagenesis and shape change in stylolitic limestone reservoirs. Proceedings of the 7th World Petroleum Congress. Journal of the Middle East Petroleum Geosciences 339–352.

  • Ebner M. Koehn D. Toussaint R. Renard F. & Schmittbuhl J. 2009. Stress sensitivity of stylolite morphology. Earth and Planetary Science Letters 277 394–398.

  • Ehrenberg S.M. 2006. Porosity destruction in carbonate platforms. Journal of Petroleum Geology 29 41–55.

  • Fairbridge R.W.1968. Encyclopedia of Geomorphology. Dowden Hutchinson and Ross Pennsylvania 1295 pp.

  • Flügel E. 2004. Microfacies of carbonate rocks. Analysis Interpretation and Application. Springer New York 983.

  • Füchtbauer H. 1974. Sediments and Sedimentary Rocks 1. Schweizerbart`sche Verlagsbuchhandlung Stuttgart 1–464.

  • Glover J. E. 1968. Significance of stylolites in dolomitic limestones. Nature 217 835–836.

  • Goldhammer R.K. 1997. Compaction and decompaction algorithms for sedimentary carbonates. Journal of Sedimentary Research 67 26–35.

  • Gradziński R. Kostecka A. Radomski A. & Unrug R. 1986. Zarys sedymentologii [Outline of Sedimentology]. Wydawnictwa Geologiczne Warszawa 628 pp.

  • Heald M.T. 1955. Stylolites in sandstone. Journal of Geology 63 101–114.

  • Heap M.J. Baud P. Reuschlé T. & Meredith P.G. 2014. Stylolites in limestones: Barriers to fluid flow? Geology 42 51–54.

  • Jaworowski K. & Mikołajewski Z. 2007. Oil- and gas-bearing sediments of the Main Dolomite (Ca2) in the Międzychód region: a depositional model and the problem of the boundary between the second and third depositional sequences in the Polish Zechstein Basin. Przegląd Geologiczny 55 1017–1024.

  • Kaplan M.Ye. 1976. Origin of stylolites. Earth Science Section 211 205–207.

  • Katsman R. & Aharonov E. 2006. A study of compaction bands originating from crack notches and compacted defects. Journal of Structural Geology 28 508–518.

  • Katsman R. Aharonov E. & Scher H. 2005. Numerical simulation of compaction bands in high-porosity sedimentary rock. Mechanics of Materials 37 143–162.

  • Kiełt M. 2002. Geofizyka wiertnicza w poszukiwaniach węglowodorów. Strukturalne i sedymentologiczne zastosowanie otworowych profilowań geofizycznych [Well-log geophysics in hydrocarbon exploration. Structural and sedimentological application of geophysical logs]. Adam Marszałek Publishing House Toruń 543.

  • Kijewski P. & Kaszper J. 1973. Tekstury stylolitowe w cechsztyńskich skałach węglanowych poziomu W1 monokliny przedsudeckiej [Stylolitic textures in the Zeichstein carbonate rocks of the horizon W1 of the Fore-Sudetic Monocline]. Geological Quarterly 17 497–506.

  • Kochman A. 2006. Wybrane metody szacowania kompakcji w osadach węglanowych [Different methods for reconstruction of compaction applied in limestones]. Technika Poszukiwań Geologicznych: Geotermia Zrównoważony Rozwój 45 35–43.

  • Koepnick R.B. 1988. Significance of Stylolite Development in Hydrocarbon Reservoirs with an Emphasis on the Lower Cretaceous of the Middle East. Geological Society of Malaysia Bulletin 22 23–43.

  • Kotarba M.& Wagner R. 2007. Generation potential of the Zechstein Main Dolomite (Ca2) carbonates in the Gorzów Wielkopolski–Międzychód–Lubiatów area: geological and geochemical approach to microbial-algal source rock. Przegląd Geologiczny 55 1025–1036.

  • Krzesińska A. Redlińska-Marczyńska A. Wilkosz P. & Żelaźniewicz A. 2010. Struktury hydratacyjne i deformacyjne w skalach czapy gipsowej wysadu solnego Dębiny w rowie Kleszczowa [Deformation and hydrational structures in cap rocks of the Dębina Salt Dome the Kleszczów Graben central Poland]. Przegląd Geologiczny 58 522–530.

  • Larsen G. & Chilingar G.V. 1979. Diagenesis in Sediments and Sedimentary Rocks. Elsevier Amsterdam 579 pp.

  • Leythaeuser D. Borromeo O. Mosca F. Primio R. Radke M. & Schaefer R.G. 1995. Pressure solution in carbonate source rocks and its control on petroleum generation and migration. Marine and Petroleum Geology 12 711–733.

  • Matyszkiewicz J. 1996. Wybrane problemy diagenezy osadów węglanowych [Selected problems of diagenesis of carbonate rocks]. Przegląd Geologiczny 44 596–603.

  • Mikołajewski Z. & Słowakiewicz M. 2008. Microfacies and diagenesis of the Main Dolomite (Ca2) strata in the Międzychód barrier area (Grotów Peninsula Western Poland). Biuletyn Państwowego Instytutu Geologicznego 429 191–198.

  • Moore C.H. 2001. Carbonate Reservoirs: Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework. Elsevier Amsterdam 444 pp.

  • Mossop G.D. 1972. Origin of the peripheral rim Redwater Reef Alberta. Bulletin of Canadian Petroleum Geology 20 238–280.

  • Neugenbauer J. 1973. The diagenetic problem of chalk the role of pressure solution and pore fluid. Neues Jahrbuch fur Geologie und Palaontologie 143 223–245.

  • Park W.C. & Schot E.K. 1968. Stylolites: Their nature and origin. Journal of Sedimentary Petrology 38 175–191.

  • Peacock D.C.P. & Azzam I.N. 2006. Development and scaling relationships of a stylolite population. Journal of Structural Geology 28 1883–1889.

  • Peryt T. M. 1978. Charakterystyka mikrofacjalna cechsztyńskich osadów węglanowych cyklotemu pierwszego i drugiego na obszarze Monokliny Przedsudeckiej [Microfacies of the carbonate sediments of the Zechstein Werra and Stassfurt cyclothems in the Fore-Sudetic Monocline]. Studia Geologica Polonica 54 1–88.

  • Peryt T.M. & Dyjaczyński K. 1991. An isolated carbonate bank in the Zechstein Main Dolomite basin Western Poland. Journal of Petroleum Geology 14 445–458.

  • Protas A. Wojtkowiak Z. 2000. Blok Gorzowa. Geologia dolnego cechsztynu [The Gorzów Block. Geology of the Lower Zechstein]. Guide to 71st Congress of the Polish Geological Society 163–171.

  • Radlicz K. 1966. Tekstury stylolitowe [The structures of stylolites]. Geological Quarterly 10 367–382.

  • Ramsden R.M. 1952. Stylolites and oil migration. American Association of Petroleum Geologists Bulletin 36 2185–2192.

  • Renard F. Schmittbuhl J. Gratier J.P. Meakin P. & Merino E.M. 2004. Three-dimensional roughness of stylolites in limestones. Journal of Geophysical Research 109 B3 1–12.

  • Ricken W. 1987. The carbonate compaction law: a new tool. Sedimentology 34 571–584.

  • Rustichelli A. Tondi E. Agosta F. Cilona A. & Giorgioni M. 2012. Development and distribution of bed-parallel compaction bands and pressure solution seams in carbonates (Bolognano Formation Majella Mountain Italy). Journal of Structural Geology 37 181–199.

  • Schmittbuhl J. Renard F. Gratier J.P. & Toussaint R. 2004. Roughness of Stylolites: Implications of 3D High Resolution Topography Measurements. The American Physical Society 93 1–4.

  • Scholle P.A. & Halley R.B. 1985. Burial diagenesis: out of sight out of mind. In: Carbonate Cements. Society of Economic Paleontologists and Mineralogists Special Publication 36 135–160.

  • Semyrka R. 1985. Uwarunkowania roponośności dolomitu głównego na obszarze Pomorza Zachodniego [Dependences of oil-bearing capacity of Main Dolomite in the region of Pomorze Zachodnie]. Prace Geologiczne Polskiej Akademii Nauk 129 1–113.

  • Sheppard T.H. 2002. Stylolite development at sites of primary and diagenetic fabric contrast within the Sutton Stone (Lower Lias) Ogmore-by-Sea Glamorgan UK. Proceedings of the Geologists Association II3 97–109.

  • Shinn E.A. & Robbin D.M. 1983. Mechanical and chemical compaction in fine-grained shallow-water limestones. Journal of Petroleum Geology 53 595–618.

  • Sinha-Roy S. 2002. Kinetics of differentiated stylolite formation. Current Science 82 1038–1046.

  • Słowakiewicz M. & Mikołajewski Z. 2009. Sequence stratigraphy of the Upper Permian Zechstein Main Dolomite carbonates in Western Poland: a new approach. Journal of Petroleum Geology 32 215–234.

  • Stockdale P.B. 1926. The stratigraphic significance of solution in rocks. Journal of Geology 34 399–414.

  • Strzetelski W. 1977. Rozwój procesów stylolityzacji i deformacji epigenetycznych w aspekcie roponośności piaskowców kwarcytowych kambru środkowego w rejonie Żarnowca [The evolution of stylolitization and epigenetic deformations in the Middle Cambrian oil-bearing quartzose sandstones in the area of Żarnowiec (Northern Poland)]. Rocznik Polskiego Towarzystwa Geologicznego 47 559–584.

  • Środoń J. 1996. Minerały ilaste w procesach diagenezy [Clay minerals in diagenetic processes]. Przegląd Geologiczny 44 604–607.

  • Tucker M.E. & Wright V.P. 1990. Carbonate Sedimentology. Blackwell Oxford 482 pp.

  • Twardowski K. & Traple J. 2008. O kompakcji utworów geologicznych. [Compaction of geologic formations]. Wiertnictwo Nafta Gaz 25 53–62.

  • Vandeginste V. & John C.M. 2013. Diagenetic implications of stylolitization in pelagic carbonates Canterbury Basin Offshore New Zealand. Journal of Sedimentary Research 83 226–240.

  • Wagner R. 1994. Stratigraphy and evolution of the Zechstein basin in the Polish Lowland. Prace Państwowego Instytutu Geologicznego 166 1–71.

  • Wanless H.R. 1979. Limestone response to stress: pressure solution and dolomitization. Journal of Sedimentary Petrology 49 437–462.

  • Waschs D. & Hein J.R. 1974. Petrography and diagenesis of Franciscan limestone. Journal of Sedimentary Petrology 44 1217–1231.

  • Westphal H. 1998. Carbonate platform slopes – a record of changing conditions. The Pliocene of the Bahamas. Lecture Notes in Earth Sciences 75 Springer Heidelberg 197.

  • Westphal H.& Munnecke A. 1997. Mechanical compaction versus early cementation in fine-grained limestones: differentiation by the presentation of organic microfossils. Sedimentary Geology 112 33–42.

  • Young R.B. 1945. Stylolitic solution in Witwatersrand quartzites. Transactions of Geological Society of South Africa 47 137–142.

Search
Journal information
Impact Factor


CiteScore 2018: 1.19

SCImago Journal Rank (SJR) 2018: 0.306
Source Normalized Impact per Paper (SNIP) 2018: 0.937


Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 188 114 2
PDF Downloads 86 56 1