Modelling geothermal conditions in part of the Szczecin Trough – the Chociwel area

Open access

Abstract

The Chociwel region is part of the Szczecin Trough and constitutes the northeastern segment of the extended Szczecin-Gorzów Synclinorium. Lower Jurassic reservoirs of high permeability of up to 1145 mD can discharge geothermal waters with a rate exceeding 250 m3/h and temperatures reach over 90°C in the lowermost part of the reservoirs. These conditions provide an opportunity to generate electricity from heat accumulated in geothermal waters using binary ORC (Organic Rankine Cycle) systems. A numerical model of the natural state and exploitation conditions was created for the Chociwel area with the use of TOUGH2 geothermal simulator (i.e., integral finite-difference method). An analysis of geological and hydrogeothermal data indicates that the best conditions are found to the southeast of the town of Chociwel, where the bottom part of the reservoir reaches 3 km below ground. This would require drilling two new wells, namely one production and one injection. Simulated production with a flow rate of 275 m3/h, a temperature of 89°C at the wellhead, 30°C injection temperature and wells being 1.2 km separated from each other leads to a small temperature drop and moderate requirements for pumping power over a 50 years’ time span. The ORC binary system can produce at maximum 592.5 kW gross power with the R227ea found as the most suitable working fluid. Geothermal brine leaving the ORC system with a temperature c. 53°C can be used for other purposes, namely mushroom growing, balneology, swimming pools, soil warming, de-icing, fish farming and for heat pumps.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Baba A. Demir M.M. Koç G.A. & Tuğcu C. 2015. Hydrogeological properties of hyper-saline geothermal brine and application of inhibiting siliceous scale via pH modification. Geothermics 53 406–412.

  • Barbacki A. Bujakowski W. & Pająk L. 2009. Optymalne strefy lokalizacji otworów geotermalnych dla zbiorników: kredy dolnej jury dolnej i triasu oraz potencjalne kierunki wykorzystania zbiornika triasowego. [In:] Bujakowski W. (Ed.) Opracowanie i testy zintegrowanej metodyki prac sejsmo­magnetotellurycznych w aspekcie rozpoznania przestrzennego wgłębnej budowy geo logicznej dla wskazania optymalnej lokalizacji otworów geotermalnych [The elaboration and testing of new methodology of the integrated seismo–megnetotelluric surveys in the aspect of the geological structure spatial recognition to indicate the optimal area for locating geothermal boreholes]. Revel Kraków 138–146 (in Polish English summary).

  • Bujakowski W. & Tomaszewska B. (Eds) 2014. Atlas wykorzystania wód termalnych do skojarzonej produkcji energii elektrycznej i cieplnej w układach binarnych w Polsce [Atlas of the possible use of geothermal waters for combined production of electricity and heat using binary systems in Poland]. Jak Kraków 307 pp. (in Polish with English extended abstract).

  • Bujakowski W. 2010. Wykorzystanie wód termalnych w Polsce (stan na rok 2009) [The use of geothermal waters in Poland (state in 2009)]. Przegląd Geologiczny 58 580–588 (in Polish English abstract).

  • Chowaniec J. 2009. Studium hydrogeologii zachodniej części Karpat polskich [Hydrogeology study of the western part of the Polish Carpathians]. Biuletyn Państwowego Instytutu Geologicznego 434 1–98 (in Polish English Summary).

  • Ciężkowski W. Chowaniec J. Górecki W. Krawiec A. Rajchel L. & Zuber A. 2010. Mineral and thermal waters of Poland. Przegląd Geologiczny 58 762–773.

  • Dadlez R. & Jaroszewski W. 1994. Tektonika [Tectonics]. PWN Warsaw 742 pp. (in Polish).

  • Deczkowski Z. 1997. Jura dolna. [In:] Marek S. & Pajchlowa M. (Eds) Epikontynentalny perm i mezozoik w Polsce [Epicontinental Permian and Mesozoic in Poland]. Prace Państwowego Instytutu Geologicznego 153 Polish Geological Institute Warszawa 452 pp. (in Polish).

  • Demir M.M. Baba A. Atilla V. & İnanlı M. 2014. Types of the scaling in hyper saline geothermal system in northwest Turkey. Geothermics 50 1–9.

  • Garlicki A. & Szybist A. 1986. Salinarne osady polskiego cechsztynu z solami potasowo–magnezowymi [Saline deposits of Polish Zechstein with potash salt]. Gospodarka Surowcami Mineralnymi 2 389–404 (in Polish English summary).

  • Górecki W. (Ed.) 1995. Atlas zasobów energii geotermalnej na Niżu Polskim [Atlas of geothermal resources in the Polish Lowlands]. Geosynoptics Society GEOS. AGH University of Science and Technology Kraków (in Polish).

  • Górecki W. (Ed.) 2006. Atlas zasobów geotermalnych formacji mezozoicznej na Niżu Polskim [Atlas of geothermal resources of mesozoic formations in the Polish Lowlands]. Department of Fossil Fuels AGH University of Science and Technology Kraków 485 pp. (in Polish and English).

  • Górecki W. 2010. Wody geotermalne na Niżu Polskim [Geothermal waters in the Polish Lowlands]. Przegląd Geologiczny 58 574–579 (in Polish English abstract).

  • Górecki W. Hajto M. Strzetelski W. & Szczepański A. 2010. Dolnokredowy oraz dolnojurajski zbiornik wód geotermalnych na Niżu Polskim [Lower Cretaceous and Lower Jurassic aquifers in the Polish Lowlands]. Przegląd Geologiczny 58 589–593 (in Polish English abstract).

  • Karnkowski P.H. 2008. Regionalizacja tektoniczna Polski – Niż Polski [Tectonic subdivisions of Poland: Polish Low lands]. Przegląd Geologiczny 56 895–903 (in Polish English abstract).

  • Kępińska B. 2013. Wykorzystanie energii geotermalnej w Polsce 2012–2013. [Geothermal energy use in Poland 2012–2013]. Technika Poszukiwań Geologicznych. Geotermia Zrównoważony Rozwój 52 5–24 (in Polish English abstract).

  • Koseoglu H. Harman B.I. Yigit N.O. Guler E. Kabay N. & Kitis M. 2010. The effects of operating conditions on boron removal from geothermal waters by membrane processes. Desalination 258 72–78.

  • Miecznik M. 2013. Błąd szacowania potencjału dla wytwarzania energii elektrycznej w instalacjach binarnychtypu ORC związany zezmiennością parametrów termodynamicznych wody geotermalnej [Error in the estimation of the potential for electricity generation in a binary ORC systems associated with variation of thermodynamic parameters of geothermal water]. Technika Poszukiwań Geologicznych. Geotermia Zrównoważony Rozwój 52 155–166 (in Polish English abstract).

  • Öner Ş.G. Kabay N. Güler E. Kitiş M. & Yüksel M. 2011. A comparative study for the removal of boron and silica from geothermal water by cross–flow flat sheet reverse osmosis metod. Desalination 283 10–15.

  • Özgür N. & Çalışkan T.A. 2013. Active geothermal systems in the Menderes Massif western Anatolia Turkey. Procedia Earth and Planetary Science 7 652–655.

  • Pająk L. & Bujakowski W. 2013. Energia geotermalna w systemach binarnych [Geothermal energy in binary systems]. Przegląd Geologiczny 61 699–705 (in Polish English abstract).

  • Preuss K. Oldenburg C. & Moridis G. 1999. TOUGH2 User`s Guide Version 2.0. Lawrence Berkley National Laboratory California 210 pp.

  • Pussak M. Bauer K. Stiller M. &Bujakowski W. 2014. Improved 3D seismic attribute mapping by CRS stacking instead of NMO stacking: Application to a geothermal reservoir in the Polish Basin. Journal of Applied Geophysics 103 186–198.

  • Sowiżdżał A. Papiernik B. Machowski G. & Hajto M. 2013. Characterization of petrophysical parameters of the Lower Triassic deposits in a prospectivelocation for Enhanced Geothermal System (central Poland). Geological Quarterly 57 729–744.

  • Sowiżdżał A. 2009. Analiza geologiczna i ocena zasobów wód i energii geotermalnej formacji mezozoicznej niecki szczecińskiej [Geological analysis and assesment of geo­thermal water and energy resources of Mesozoic formations in the Szczecin Trough]. PhD thesis AGH University of Science and Technology Kraków 279 pp. (in Polish).

  • Sowiżdżał A. 2010. Perspektywy wykorzystania zasobów wódtermalnych jury dolnej z regionu niecki szczecińskiej (północno-zachodnia Polska) w ciepłownictwie balneologii i rekreacji [Prospects of use of thermal water resources of Lower Jurassic aquifer in the Szczecin Trough (NW Poland) for space heating and balneology and recreation]. Przegląd Geologiczny 58 613–621 (in Polish English abstract).

  • Sowiżdżał A. 2012. Potencjał geotermalny Niecki Szczeciń-skiej [Geothermalpotential of the Szczecin Trough]. GEOS Kraków 119 pp. (in Polish English abstract).

  • Stankowski W. 2012. Transformation from natural (thermal contraction) to anthropogenic (resource exploitation) depressions in the Krotoszyn–Koźmin–Raszków area (Polish Lowland). Geologos 1843–50.

  • Stupnicka E. 1997. Geologia regionalna Polski [Regional­geology of Poland]. Warsaw University Press Warsaw 348 pp. (in Polish).

  • Szczepański A. & Szklarczyk T. 2006. Modelowanie matematyczne w ocenie zasobów geotermalnych [Mathematical modelling in estimation of geothermal resources]. Geologos 10 253–261 (in Polish English abstract).

  • Szewczyk J. & Gientka D. 2009. Terrestrial heat flow density in Poland – a new approach. Geological Quarterly 53 125–140.

  • Tarkowski R. & Wdowin M. 2011. Petrophysical and mineralogical research on the influence of CO2 injection on Mesozoic reservoir and caprocks from the Polish Lowlands. Oil & Gas Science and Technology Rev. IFP Energies nouvelles66 137–150.

  • Tomaszewska B. & Bodzek M. 2013. The removal of radionuclides during desalination of geothermal waters containing boron using the BWRO system. Desalination309 284–290.

  • Tomaszewska B. & Pająk L. 2012. Dynamics of clogging processes in injection wells used to pump highly mineralized thermal waters into the sandstone structures lying under the Polish Lowlands. Archives of Environmental Protection 38 105–117.

  • Tomaszewska B. Pająk L. & Bodzek M. 2014. Application of a hybrid UF-RO process to geothermal water desalination. Concentrate disposal and costs analysis. Archives of Environmental Protection 40 137–151.

  • Tomaszewska B. & Szczepański A. 2014. Possibilities for the efficient utilisation of spent geothermal waters. Environmental Science and Pollution Research 21 11409–11417.

  • Zboińska A. 1987. Dokumentacja wynikowa odwiertu poszukiwawczego Chociwel 3 [Documentation of the Chociwel 3 well]. Polish Geological Institute Warszawa 87 pp.

  • Zuber A. & Chowaniec J. 2009. Diagenetic and other highly mineralized waters in the Polish Carpathians. Applied Geochemistry 24 1889–1900.

  • Żbikowska E. Walczak M. & Krawiec A. 2013. Distribution of Legionella pneumophila bacteria and Naegleria and Hartmannella amoebae in thermal saline baths used in balneotherapy. Parasitology Research 112 77–83.

Search
Journal information
Impact Factor


CiteScore 2018: 1.19

SCImago Journal Rank (SJR) 2018: 0.306
Source Normalized Impact per Paper (SNIP) 2018: 0.937


Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 122 76 1
PDF Downloads 85 53 1