Seismic and non-seismic soft-sediment deformation structures in the Proterozoic Bhander Limestone, central India

Subir Sarkar 1 , Adrita Choudhuri 1 , Santanu Banerjee 2 , A.J. (Tom) Van Loon 3  und Pradip K Bose 1
  • 1 Department of Geological Sciences, Jadavpur University, Kolkata-700 032, India
  • 2 Department of Earth Sciences, IIT Bombay, Powai, Mumbai 400 076, India
  • 3 Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, 61-606 Poznan, Poland. e-mail: tom.van.loon@wxs.nl

Abstract

Numerous soft-sediment deformation structures occur within the Proterozoic Bhander Limestone of an intracratonic sag basin in a 750 m long section along the Thomas River, near Maihar, central India. Part of these deformation structures have most probably a non-seismic origin, but other structures are interpreted as resulting from earthquake-induced shocks. These seismic structures are concentrated in a 60 cm thick interval, which is interpreted as three stacked seismi-tes. These three seismites are traceable over the entire length of the section. They divide the sedimentary succession in a lower part (including the seismites) deposited in a hypersaline lagoon, and an upper open-marine (shelf) part. Most of the soft-sediment deformations outside the seismite interval occur in a lagoonal intraclastic and muddy facies association.

The SSDS within the seismite interval show a lateral continuity. They record simultaneous fluidisation and liquefaction. The bases of each of the three composing seismite bands are defined by small-scale shear folds, probably recording an earthquake and aftershocks.

The presence of the three seismite bands at the boundary between the lagoonal and the overlying open-marine oolitic facies association suggests that the seismic event also triggered basin subsidence.

Falls das inline PDF nicht korrekt dargestellt ist, können Sie das PDF hier herunterladen.

  • Akhtar, K., 1996. Facies, sedimentation processes and environments in the Proterozoic Vindhyan Basin, India. Memoir of Geological Society of India36, 127-136.

  • Amorosi, A., 1997. Detecting compositional, spatial, and temporal attributes of glaucony: a tool for provenance research. Sedimentary Geology109, 135-153.

  • Banerjee, S., Bhattacharya, S.K. & Sarkar, S., 2006. Carbon and oxygen isotope compositions of the carbonate fa-cies in the Vindhyan Supergroup, central India. Journal of Earth Systems Science115, 113-134.

  • Banerjee, S., Jeevankumar, S. & Eriksson, P.G., 2008. Mg-rich illite in marine transgressive and highstand system tracts: examples from the Palaeoproterozoic Semri Group, central India. Precambrian Research162, 212-226.

  • Banerjee, S., Chattoraj, S.L., Saraswati, P.K., Dasgupta, S. & Sarkar, U., 2012a. Substrate control on formation and maturation of glauconites in the Middle Eocene Harudi Formation, western Kutch, India. Marine and Petroleum Geology30, 144-160.

  • Banerjee, S., Chattoraj, S.L., Saraswati, P.K., Dasgupta, S., Sarkar, U. & Bumby, A., 2012b. The origin and maturation of lagoonal glauconites: a case study from the Oligocene Maniyara Fort Formation, western Kutch, India. Geological Journal,doi: 10.1002/gj.1345.

  • Bathurst, R.G.C., 1975. Carbonate sediments and their di-agenesis.Developments in Sedimentology, Vol. 12. Elsevier (Amsterdam) 439 pp.

  • Berra, F., & Felletti, F., 2011. Syndepositional tectonics recorded by soft-sediment deformation and liquefac-tionstructures (continental Lower Permian sediments, Southern Alps, Northern Italy): Stratigraphic significance. Sedimentary Geology235, 249-263.

  • Bose, P.K. & Chakraborty, P.P., 1994. Marine to fluvial transition: Proterozoic Upper Rewa Sandstone, Mai-har, India. Sedimentary Geology89, 285-302.

  • Bose, P.K., Banerjee, S., & Sarkar, S., 1997. Slope-controlled seismic deformation and tectonic framework of deposition: Koldaha Shale, India. Tectonophysics 269, 151-169.

  • Bose, P.K., Sarkar, S., Chakraborty, S. & Banerjee, S., 2001. Overview of the Meso- to Neoproterozoic evolution of the Vindhyan basin, central India. Sedimentary Geology141, 395-419.

  • Bose, P.K., Eriksson, P.G., Sarkar, S., Wright, D., Samanta, P., Mukhopadhyay, S., Mandal, S., Banerjee, S. & Al-termann, W., 2012. Sedimentation patterns during the Precambrian: a unique record. Marine and Petroleum Geology33, 34-68.

  • Campbell, K.A., Nesbitt, E.A. & Bourgeois, J., 2006. Signatures of storms, oceanic floods and forearc tectonism in marine shelf strata of the Quinault Formation (Pliocene), Washington, USA. Sedimentology53, 945-969.

  • Chakraborty, P.P., 1996. Facies and sequence development in some late Proterozoic Formations in Son valley, India with some clues for basin evolution.Unpublished Ph.D. thesis Jadavpur University (Calcutta) 104 pp.

  • Chakraborty, P.P., 2011. Slides, soft-sediment deformations, and mass flows from Proterozoic Lakheri Limestone Formation, Vindhyan Supergroup, central India, and their implications towards basin tectonics. Facies57, 331-349.

  • Chakraborty, P.P., Sarkar, S. & Bose, P.K., 1998. A viewpoint on intracratonic chenier evolution: clue from a reappraisal of the Proterozoic Ganurgarh Shale, central India. [In:] B.S. Palliwal (Ed.): The Indian Pre-cambrians.Scientific Publishers (Jodhpur), 61-72.

  • Chakraborty, P.P., Sarkar, A., Bhattacharya, S.K. & San-yal, P., 2002. Isotopic and sedimentological clues to productivity change in Late Riphean Sea: a case study from two intracratonic basins of India. Proceedings of the Indian Academy of Sciences (Earth and PlanetarySciences)111, 379-390.

  • Chanda, S.K. & Bhattacharya, A., 1982. Vindhyan sedimentation and paleogeography: Post-Auden developments. [In:] K.S. Valdiya, S.B. Bhatia & V.K. Gaur (Eds.): Geology of Vindyanchal.Hindustan Publ. Corporation, Delhi, 88-101

  • Chen, J., Chough, S.K., Chun, S.S. & Han, Z., 2009. Limestone pseudoconglomerates in the Late Cambrian Gushan and Chaomidian Formations (Shandong Province, China): soft-sediment deformation induced by storm-wave loading. Sedimentology56, 1174-1195.

  • Coleman, M.L. & Raiswell, R., 1995. Source of carbonate and origin of zonation in pyritiferous carbonate concretions: evaluation of a dynamic model. AmericanJournal of Science295, 282-308.

  • Cook, H.E. & Mullins, H.T., 1983. Basin margin environment. American Association of Petroleum GeologistsMemoir33, 540-617.

  • Dasgupta, S., Chaudhuri, A.K. & Fukuoka, M., 1990. Compositional characteristics of glauconitic alterations of K-feldspar from India and their implications. Journal of Sedimentary Petrology60, 277-281.

  • Davies, S.J. & Gibling, M.R., 2003. Architecture of coastal and alluvial deposits in an extensional basin: the Carboniferous Joggins Formation of eastern Canada. Sedimentology50, 415-439.

  • Deb, S.P. & Fukuoka, M., 1998. Fe-illites in a Proterozoic deep marine slope deposit in the Penganga Group of the Pranhita Godavari valley: their origin and environmental significance. Journal of Geology106, 741-749.

  • De Raaf, J.F.M., Boersma, J.R. & Van Gelder, A., 1977. Wave generated structures and sequences from a shallow marine succession. Lower Carboniferous County Cork, Ireland. Sedimentology24, 451-483.

  • Enos, P., 1977. Flow regimes in debris flow. Sedimentology 24, 133-142.

  • Fisher, R.V., 1981. Flow transformation in sediment gravity flows. Geology11, 273-274.

  • Ghosh, S.K. & Lahiri, S., 1990. Soft sediment deformation by vertical movement. Indian Journal of Earth Science 17, 23-43.

  • Gopalan, K., Kumar, A., Kumar, S. & Vijayagopal, B., 2013. Depositional history of the Upper Vindhyan succession, central India: time constraint from Pb-Pb isochron ages of its carbonate components. Precambri-an Research233, 103-117.

  • He, B., Qiao, X., Jiao, C., Xu, Z., Cai, Z., Guo, X., Zhang, Y. & Zhang, M., 2014. Paleo-earthquake events in the late Early Palaeozoic of the central Tarim Basin: evidence from deep drilling cores. Geologos20, 105-123.

  • Horita, J., Zimmermann, H. & Holland, H.D., 2007. Chemical evolution of seawater during the Phanero-zoic: implications from the record of marine evapo-rites. Geochimica et Cosmochimica Acta66, 3733-3756.

  • Kumar, S., Schidlowski, M. & Joachimski, M.M., 2005. Carbon isotope stratigraphy of the Palaeo-Neoprote-rozoic Vindhyan Supergroup, central India: implications for basin evolution and intrabasinal correlation. Journal of the Palaeontological Society of India50, 65-81.

  • Kump, L.R., 2008. The role of seafloor hydrothermal systems in the evolution of seawater composition during the Phanerozoic. [In:] R.P. Lowell, J.S. Seewald, A. Metaxas & M.R. Perfit (Eds): Magma to microbe: modeling hydrothermal processes at ocean spreading centers. Geophysical Monograph Series American Geophysical Union178, 275-283

  • Lowe, D.R., 1975. Water escape structures in coarsegrained sediments. Sedimentology22, 157-204. Malone, S.J., Meert, J.G., Banerjee, D.M., Pandit, M.K., Tamrat, E., Kamenov, G.D., Pradhan, V.R. & Sohl, L.E., 2008. Paleomagnetism and detrital zircon ge-ochronology of the Upper Vindhyan sequence, Son Valley and Rajasthan, India: a ca. 1000 Ma closure age for the Purana basins? Precambrian Research164, 137-159.

  • Moretti, M. & Van Loon, A.J., 2014. Restrictions to the application of ‘diagnostic’ criteria for recognizing ancient seismites. Journal of Palaeogeography3, 13-24.

  • Nagtegaal, P.J.C., 1963. Convolute lamination, meta-depositional ruptures and slumping in an exposure near Pobla de Segur (Spain). Geologie en Mijnbouw42, 363-374.

  • Odin, G.S. & Matter, A., 1981. De glauconiarum origine. Sedimentology28, 611-641.

  • Orti, F., Rosell, L. & Anadon, P., 2003. Deep to shallow lacustrine evaporites in the Libros Gypsum (southern Teruel Basin, Miocene, NE Spain): an occurrence of pelletal gypsum rhythmites. Sedimentology50, 361386.

  • Owen, G., 1996. Experimental soft-sediment deformation: structures formed by the liquefaction of unconsolidat-ed sands and some ancient examples. Sedimentology43, 279-293.

  • Owen, G., Moretti, M. & Alfaro, P. (Eds), 2011. Recognising triggers for soft-sediment deformation: current understanding and future directions. Sedimentary Geology235, 3/4.

  • Perucca, L.P., Godoy, E. & Pantano, A., 2014. Late Pleis- tocene-Holocene earthquake-induced slumps and soft-sediment deformation structures in the Acequion River valley, Central Precordillera, Argentina. Geolo-gos20, 147-156.

  • Ray, J.S., 2006. Age of the Vindhyan Supergroup: a review of recent findings. Journal of Earth System Science 115, 149-160.

  • Ray, J.S., Veizer, J. & Davis, W.J., 2003. C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: age, diagenesis, correlations and implications for global events. PrecambrianResearch121, 103-140.

  • Sanders, J.E., 1960. Origin of convolute lamination. Geological Magazine97, 409-421.

  • Sarkar, S., Chakraborty, P.P. & Bose, P.K., 1994. Multi-mode generation of carbonate tabular intraclast deposits: unnamed Proterozoic formation, Maharastra. Journal of the Geological Society of India43, 415-423.

  • Sarkar, S., Banerjee, S. & Chakraborty, S., 1995. Synsedi-mentary seismic signature in Mesoproterozoic Kolda-ha Shale, Kheinjua Formation, central India. Indian Journal of Earth Science22, 158-164.

  • Sarkar, S., Chakrabarty, P.P. & Bose, P.K., 1996. Protero- zoic Lakheri (Bhander) Limestone, central India: facies, paleogeography and physiography. [In:] A. Bhat-tacharya (Ed.): Recent advances in Vindhyan geology. Memoir of Geological Society of India36, 5-26.

  • Sarkar, S., Chakraborty, P.P., Bhattacharyya, S.K. & Ba-nerjee, S., 1998. C-12 enrichment along intraforma-tional unconformities within Proterozoic Bhander Limestone, Son Valley, India and its implications. Carbonates and Evaporites13, 108-114. Sarkar, S., Chakraborty, S., Banerjee, S. & Bose, P.K., 2002. Facies sequence and cryptic imprint of sag tectonics in late Proterozoic Sirbu Shale, central India. [In:] W. Altermann & P. Corcoran (Eds): Precambrian sedimentary environments: a modern approach to ancient depositional systems. International Association of Sedi-mentologists Special Publication(Blackwell Science) 33, 369-382.

  • Seth, A., Sarkar, S. & Bose, P.K., 1990. Synsedimentary seismic activity in an immature passive margin basin, lower member of Katrol Formation, Upper Jurassic, Kutch, India. Sedimentary Geology68, 279-291.

  • Seilacher, A., 1984. Sedimentary structures tentatively attributed to seismic events. Marine Geology55, 1-12.

  • Seilacher, A., 2001. Concretion morphologies reflecting diagenetic and epigenetic pathways. Sedimentary Geology143, 41-57.

  • Uner, S., 2014. Seismogenic structures in Quaternary lacustrine deposits of Lake Van (eastern Turkey). Geo-logos20, 79-87.

  • Valente, A., Ślączka, A. & Cavuoto, G., 2014. Soft-sediment deformation in Miocene deep-sea clastic deposits (Cilento, southern Italy). Geologos20, 67-78.

  • Van Loon, A.J., 2009. Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos 15, 3-55.

  • Van Loon, A.J., 2014a. The life cycle of seismite research. Geologos20, 61-66.

  • Van Loon, A.J., 2014b. The Mesoproterozoic ‘seismite’ at Laiyuan (Hebei Province, E China) re-interpreted. Geologos20, 139-146.

  • Van Loon, A.J. & Pisarska-Jamroźy, M., 2014. Sedimen-tological evidence of Pleistocene earthquakes in NW Poland induced by glacio-isostatic rebound. Sedimentary Geology300, 1-10.

  • Van Loon, A.J., Han, Z. & Han, Y., 2013. Origin of the vertically orientated clasts in brecciated shallow-marine limestones of the Chaomidian Formation (Furo-ngian, Shandong Province, China). Sedimentology60, 1059-1070.

  • Venkateshwarlu, M. & Rao, J.M., 2013. Palaeomagnetism of Bhander sediments from Bhopal inlier, Vindhyan Supergroup. Journal of the Geological Society of India81, 330-336.

OPEN ACCESS

Zeitschrift + Hefte

Suche