First report on the occurrence of CO2-bearing fluid inclusions in the Meiduk porphyry copper deposit, Iran: implications for mineralisation processes in a continental collision setting

Open access

Abstract

Hydrothermal alteration of the Meiduk porphyry copper deposit, south of the Kerman Cenozoic magmatic arc and southeast of the central Iranian volcano-plutonic belt has resulted in three stages of mineralisation characterised by veins and veinlets. These are, from early to late: (1) quartz + K-feldspar + biotite + pyrite ± chalcopyrite ± pyrrhotite ± magnetite (early potassic alteration and type-A veins); (2) quartz + chalcopyrite + pyrite + bornite + pyrrhotite + K- -feldspar + biotite + magnetite (potassic-sericitic alteration and type-B veins); and (3) quartz + pyrite + chalcopyrite + sericite (sericitic alteration and type-C veins). Most ores were formed during stages 2 and 3.

Three main types of fluid inclusions are distinguished based on petrographical, microthermometrical and laser Raman spectroscopy analyses, i.e. type I (three-phase aqueous inclusions), type II (three-phase liquid-carbonic inclusions) and type III (multi-phase solid inclusions). The fluid inclusions in quartz veins of the stages are mainly homogenised at 340-530°C (stage 1), 270-385°C (stage 2) and 214-350°C (stage 3), respectively, with salinities of 3.1-16 wt.% NaCl equivalent, 2.2-43 wt.% NaCl equivalent and 8.2-22.8 wt.% NaCl equivalent, respectively.

The estimated trapping pressures are 97.9-123.6 MPa (3.7-4.6 km) in stage 1 and 62.5-86.1 MPa (2.3-3.1 km) in stage 2, respectively. These fluid inclusions are homogenised in different ways at similar temperatures, suggesting that fluid boiling took place in stages 2 and 3. The fluid system evolved from high-temperature, medium-salinity, high-pressure and CO2-rich to low-temperature, low-pressure, high-salinity and CO2-poor, with fluid boiling being the dominating mechanism, followed by input of meteoric water. CO2 escape may have been a factor in increasing activities of NaCl and S2- in the fluids, diminishing the oxidation of the fluids from stage 1 to 3. The result was precipitation of sulphides and trapping of multi-phase solid inclusions in hydrothermal quartz veins.

References
  • Ahmadian, J., Haschke, M., McDonald, I., Regelous, M., Ghorbani, M., Emami, M. & Murata, M., 2009. High magmatic flux during Alpine-Himalayan collision: Constraints from the Kal-e-Kafi complex, central Iran. Geological Society of America Bulletin 121, 857-868.

  • Alavi, M., 2007. Structure of the the Zagros fold-thrust belt in Iran. American Journal of Science 307, 1064-1095.

  • Asadi, S., 2013. Selective geochemistry of barren and productive porphyry copper deposits in Urumiyeh- Dokhtar volcano-magmatic belt. National Iranian Copper Industries Company Internal Report (258/M/90/D) 2, 22-45.

  • Asadi, S., Moore, F. & Fattahi, N., 2013. Fluid inclusion and stable isotope constraints on the genesis of the Jian copper deposit, Sanandaj-Sirjan metamorphic zone, Iran. Geofluids 13, 66-81.

  • Bakker, R.J., 2003. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology 194, 3-23.

  • Bodnar, R.J., 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta 57, 683-684.

  • Bodnar, R.J., 1995. Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits. Mineralogical Association of Canada Short Course Series 23, 139-152.

  • Boomeri, M., Nakashima, K. & Lentz, D.R., 2009. The Miduk porphyry Cu deposit, Kerman, Iran: a geochemical analysis of the potassic zone including halogen element systematics related to Cu mineralization processes. Journal of Geochemical Exploration 103, 17-29.

  • Bowers, T.S. & Helgeson, H.C., 1983. Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geological systems: equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures. Geochimica et Cosmochimica Acta 47, 1247-1275.

  • Brown, P.E., 1989. Flincor: a microcomputer program for the reduction and investigation of fluid inclusion data. American Mineralogist 74, 1390-1393.

  • Brown, P.E. & Hagemann, S.G., 1994. MacFlinCor: A computer program for fluid inclusion data reduction and manipulation. [In:] B. De Vivo & M.L. Frezzotti (Eds): Fluid inclusions in minerals: methods and applications. International Mineralogical Association 16th Short Course of the Working Group, Portignano-Siena, Italy, 231-250.

  • Burke, E.A.J., 2001. Raman microspectrometry of fluid inclusions. Lithos 55, 139-158.

  • Castillo, P.R., 2006. An overview of adakite petrogenesis. Chinese Science Bulletin 51, 257-268.

  • Castillo, P.R., 2012. Adakite petrogenesis. Lithos 135, 304-316.

  • Chen, Y.J. & Fu, S.G., 1992. Gold mineralization in West Henan, China. China Seismological Press, Beijing, 234 pp.

  • Chen, Y.J. & Wang, Y., 2011. Fluid inclusion study of the Tangjiaping Mo deposit, Dabie Shan, Henan Province: implications for the nature of porphyry systems of postcollisional tectonic settings. International Geology Review 53, 635-655.

  • Chen, Y.J., Ni, P., Fan, H.R., Pirajno, F., Lai, Y., Su, W.C. & Zhang, H., 2007. Diagnostic fluid inclusions of different types hydrothermal gold deposits. Acta Petrologica Sinica 23, 2085-2108.

  • Chen,Y.J. & Li, N., 2009. Diagnostic fluid inclusion and wallrock alteration of intrusionrelated hypothermal ore-systems (porphyry, skarn, breccia pipe, vein and IOCG) formed in intracontinental settings: origin and difference from those in volcanic arc. Acta Petrologica Sinica 25, 2477-2508.

  • Cline, J.S. & Bodnar, R.J., 1991. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? Journal of Geophysical Research 96, 8113-8126.

  • Collins, P.L.F., 1979. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Economic Geology 74, 1435-1444.

  • Conly, A.G., Beaudoin, G. & Scott, S.D., 2006. Isotopic constraints on fluid evolution and precipitation mechanisms for the Boléo Cu-Co-Zn district, Mexico. Mineralium Deposita 41, 27-151.

  • Dehghani, G.A. & Makris, T., 1983. The gravity field and crustal structure of Iran. Geological Survey of Iran Report 51, 51-68.

  • Dercourt, J., Zonenshain, L., Ricou, L.E., Kazmin, G., LePichon, X., Knipper, A.L., Grandjacquet, C., Sbortshikov, I.M., Geyssant, J., Lepvrier, C., Pechersky, D.H., Boulin, J., Sibuet, J.C., Savostin, L.A., Sorokhtin, O., Westphal, M., Bazhenov, M.L., Lauer, J.P. & Biju-Duval, B., 1986. Geological evolution of the Tethys belt from the Atlantic to Pamirs since the Lias. Tectonophysics 123, 241-315.

  • Dewey, J.F., Pitman, W.C., Ryan, W.B. & Bonnin, J., 1973. Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin 84, 3137-3180.

  • Dimitrijevic, M.D., 1973. Geology of the Kerman region. Geological Survey of Iran Report 52, 245-334.

  • Dreher, A.M., Xavier, R.P., Taylor, B.E. & Martini, S., 2007. New geologic, fluid inclusion and stable isotope studies on the controversial Igarapé Bahia Cu-Au deposit, Carajás Province, Brazil. Mineralium Deposita 43, 161-184.

  • Dubessy, J., Buschaert, S., Lamb, W., Pironon, J. & Thiery, R., 2001. Methane-bearing aqueous fluid inclusions: raman analysis, thermodynamic modeling and application to petroleum basins. Chemical Geology 173, 193-205.

  • Fan, H.R., Hu, F.F., Wilde, S.A., Yang, K.F. & Jin, C.W., 2011. The Qiyugou gold-bearing breccia pipes, Xiong’ershan region, central China: fluid inclusion and stable isotope evidence for an origin from magmatic fluids. International Geology Review 53, 25-45.

  • Guild, P.W., 1972. Metallogeny and the new global tectonics. International Geological Congress Proceedings 4, 17-24.

  • Hall, D.L., Sterner, S.M. & Bodnar, R.J., 1988. Freezing point depression of NaCl-KCl-H2O solutions. Economic Geology 83, 197-202.

  • Haschke, M., Ahmadian, J., Murata, M. & McDonald, I., 2010. Copper mineralization prevented by arc-root delamination during Alpine-Himalayan collision in central Iran. Economic Geology 105, 855-865.

  • Hassanzadeh, J., 1993. Metallogenic and tectono-magmatic events in the SE sector of the Cenozoic active continental margin of Iran (Shahr e Babak area, Ker man province). Unpublished Ph.D. thesis. University of California, 204 pp.

  • Hezarkhani, A., 2008. Hydrothermal evolution of the Miduk porphyry copper system, Kerman, Iran: a fluid inclusion investigation. International Geology Review 50, 665-684.

  • Hou, Z.Q. & Cook, N.J., 2009. Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue. Ore Geology Reviews 36, 2-24.

  • Hou, Z.Q., Gao, Y.F., Qu, X.M., Rui, Z.Y. & Mo, X.X., 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters 220, 139-155.

  • Hou, Z.Q., Zhang, H., Pan, X. & Yang, Z., 2011. Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain. Ore Geology Reviews 39, 21-45.

  • Huizenga, J.M., 1995. Fluid evolution in shear zones from the Late Archean Harare-Shamva-Bindura greenstone belt (NE Zimbabwe): thermodynamic calculations of the C-O-H system applied to fluid inclusions. Netherlands Research School of Sedimentary Geology Press, Amsterdam, 146 pp.

  • Hurai, H., Kihle, J., Kotulova, J., Marko, F.S. & Wierczewska, A., 2002. Origin of methane in quartz crystals from the Tertiary accretionary wedge and fore-arc basin of the Western Carpathians. Applied Geochemistry 17, 1259-1271.

  • IGME-INOMRM (Institute for Geological & Mining Exploration & Institution of Nuclear and Other Mineral Raw Materials), 1973. Exploration for ore deposits in Kerman Region. Iran Geological Survey Report No. Yu/53; Iran Geological Survey (Beograd, Yugoslavia), 247 pp.

  • Karsli, O., Dokuz, A., Uysal, I., Aydin, F., Kandemir, R. & Wijbrans, R.J., 2010. Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, eastern Turkey: implications for crustal thickening to delamination. Lithos 114, 109-120.

  • Kirkham, R.V. & Dunne, K.P., 2000. World distribution of porphyry, porphyry-associated skarn, and bulk-tonnage epithermal deposits and occurrences. Geological Survey of Canada Report 3792, 1-26.

  • Klemm, L.M., Pettke, T. & Heinrich, C.A., 2008. Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Mineralium Deposita 43, 533-552.

  • Klemm, L.M., Pettke, T., Heinrich, C.A. & Campos, E., 2007. Hydrothermal evolution of the El Teniente deposit, Chile: porphyry Cu-Mo ore deposition from low-salinity magmatic fluids. Economic Geology 102, 1021-1045.

  • Landtwing, M.R., Furrer, C., Redmond, P.B., Pettke, T., Guillong, M. & Heinrich, C.A., 2010. The Bingham Canyon porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion. Economic Geology 105, 91-118.

  • Landtwing, M.R., Pettke, T., Halter, W.E., Heinrich, C.A., Redmond, P.B., Einaudi, M.T. & Kunze, K., 2005. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: the Bingham porphyry. Earth and Planetary Science Letters 235, 229-243.

  • Li, N., Carranza, E.J.M., Ni, Z.Y. & Guo, D.S., 2012. The CO2-rich magmatic-hydrothermal fluid of the Qiyugou breccia pipe, Henan Province, China: implication for breccia genesis and gold mineralization. Geochemistry: Exploration, Environment, Analysis 12, 147-160.

  • Liang, H.Y., Sun, W.D., Su, W.C. & Zartman, R.E., 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Economic Geology 104, 587-596.

  • Lowenstern, J.B., 2001. Carbon dioxide in magmas and implications for hydrothermal systems. Mineralium Deposita 36, 490-502.

  • Lu, H.Z., Fan, H.R., Ni, P., Ou, G.X., Shen, K. & Zhang, W.H., 2004. Fluid inclusions. Science Press, Beijing, 78 pp.

  • Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F. & Champion, D., 2005. An overview of adakite, tonalite- trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79, 1-24.

  • McClay, K.R., Whitehouse, P.S., Dooley, T. & Richards, M., 2004. 3D evolution of fold and thrust belts formed by oblique convergence. Marine Geology 21, 857-877.

  • McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K. & Kekelidze, G., 2000. Global positioning system constrains on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research 105, 5695-5719.

  • McCuaig, T.C. & Kerrich, R., 1998. P-T-t-deformation-fluid characteristics of lode gold deposits: evidence from alteration systematics. Ore Geology Reviews 12, 381-453.

  • McInnes, B.I.A., Evans, N.J., Fu, F.Q., Garwin, S., Belousova, E., Griffin, W.L., Bertens, A., Sukarna, D., Permanadewi, S., Andrew, R.L. & Deckart, D., 2005. Thermal history analysis of selected Chilean, Indonesian, and Iranian porphyry Cu-Mo-Au deposits. [In:] T.M. Porter (Ed.): Super porphyry copper and gold deposits: a global perspective. PGC Publishing, Adelaide, 1-16.

  • Mohajjel, M., Fergusson, C.L. & Sahandi, M.R., 2003. Cretaceous- Tertiary convergence and continental collision, Sanandaj-Sirjan zone, western Iran. Journal of Asian Earth Sciences 21, 397-412.

  • Moore, F., 1992. Fluid inclusion studies and mineralization at Meiduk porphyry copper deposit, Kerman. National Iranian Copper Industries Company Report 8, 1-26.

  • Mungall, J.E., 2002. Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 30, 915-918.

  • Nwe, Y.Y. & Morteani, G., 1993. Fluid evolution in the H2O-CH4-CO2-NaCl system during emerald mineralization at Gravelotte, Murchison greenstone belt, Northeast Transvaal, South Africa. Geochimica et Cosmochimica Acta 57, 89-103. Ohmoto, H. & Kerrick, D., 1977. Devolatilization equilibria in graphitic systems. American Journal of Science 277, 1013-1044.

  • Pirajno, F., 2009. Hydrothermal processes and mineral systems. Springer, Heidelberg, 1250 pp.

  • Razique, A.L., Grasso, G. & Livesey, T., 2007. Porphyry copper-gold deposits at Reko Diq complex, Chagai Hills Pakistan. Proceedings of Ninth Biennial SGA Meeting (Dublin), 1-7.

  • Redmond, P.B., Einaudi, M.T., Inan, E.E., Landtwing, M.R. & Heinrich, C.A., 2004. Copper deposition by fluid cooling in intrusion-centered systems: new insights from the Bingham porphyry ore deposit, Utah. Geology 32, 217-220.

  • Richards, J.P., Spell, T., Rameh, E., Razique, A. & Fletcher, T., 2012. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of central and eastern Iran and western Pakistan. Economic Geology 107, 295-332.

  • Richards, J.R. & Kerrich, R., 2007. Adakite-like rocks: their diverse origins and questionable role in metallogenesis. Economic Geology 102, 537-576.

  • Robb, L., 2005. Introduction to ore-forming processes. Blackwell Publishing, Oxford, 386 pp.

  • Roedder, E., 1984. Fluid inclusions, reviews in mineralogy. Mineralogical Society of America 12, 325-340.

  • Rusk, B. & Reed, M., 2002. Scanning electron microscope- cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana. Geology 30, 727-730.

  • Rusk, B., Reed, M. & Dilles, J., 2008. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Economic Geology 103, 307-334.

  • Saric, V. & Mijalkovic, N., 1973. Metallogenic map of Kerman region, 1:500000 scale. Exploration for ore deposits in Kerman region. Geological Survey of Iran Report 53, 244-247.

  • Shafiei, B., Haschke, M. & Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita 44, 265-283.

  • Shafiei, B., 2008. Metallogenic model for Kerman porphyry copper belt and its implications for exploration. Unpublished Ph.D. Thesis. University of Kerman (Shaheed Bahonar), Iran, 257 pp.

  • Shafiei, B., 2010. Lead isotope signatures of the igneous rocks and porphyry copper deposits from the Kerman Cenozoic magmatic arc (SE Iran), and their magmatic- metallogenetic implications. Ore Geology Reviews 38, 27-36.

  • Shahabpour, J., 2005. Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. Journal of Asian Earth Sciences 24, 405-417.

  • Shen, P., Shen, Y., Wang, J., Zhu, H., Wang, L. & Meng, L., 2010. Methane-rich fluid evolution of the Baogutu porphyry Cu-Mo-Au deposit, Xinjiang, NW China. Chemical Geology 275, 78-98.

  • Shepherd, T.J., Rankin, A.H. & Alderton, D.H.M., 1985. A practical guide to fluid inclusion studies. Blackie Press, London, 239 pp.

  • Sun, W.D., Arculus, R.J., Kamenetsky, V.S. & Binns, R.A., 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature 431, 975-978.

  • Sun, W.D., Liang, H.Y., Ling, M.X., Zhan, M.Z., Ding, X., Zhang, H., Yang, X.Y., Li, Y.L., Ireland, T.R., Wei, Q.R. & Fan, W.M., 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta 103, 263-275.

  • Taghipour, N., 2007. The application of fluid inclusions and isotope geochemistry as guides for exploration, alteration and mineralization at the Meiduk porphyry copper deposit, Shahr-Babak, Kerman. Unpublished Ph.D. Thesis. Shaheed Bahonar University (Kerman), Iran, 321 pp.

  • Taghipour, N., Aftabi, A. & Mathur, R., 2008. Geology and Re-Os geochronology of mineralization of the Miduk porphyry copper deposit, Iran. Resource Geology 2, 143-160.

  • Topuz, G., Okay, A.I., Altherr, R., Schwar, W.H., Siebel, W., Zack, T., Muharrem, S. & Cuneyt, S., 2011. Post-collisional adakite-like magmatism in the Ağvanis massif and implications for the evolution of the Eocene magmatismin the Eastern Pontides (NE Turkey). Lithos 125, 131-150.

  • Ulrich, T., Guenther, D. & Heinrich, C.A., 2001. The evolution of a porphyry Cu-Au deposit, based on LAICP- MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Economic Geology 96, 1743-1774.

  • Ulrich, T., Gunther, D. & Heinrich, C.A., 2002. Evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Economic Geology 97, 1863-1920.

  • Volkov, A.V., Savva, N.E., Sidorov, A.A., Prokofev, V.Y., Goryachev, N.A., Voznesensky, S.D., Al’Shevsky, A.V. & Chernova, A.D., 2011. Shkol’noe gold deposit, the Russian Northeast. Geology of Ore Deposits 53, 1-26.

  • Wang, L.L., Mo, X.X., Li, B., Dong, G.C. & Zhao, Z.D., 2006. Geochronology and geochemistry of the ore-bearing porphyry in Qulong Cu (Mo) ore deposit, Tibet. Acta Petrologica Sinica 22, 1001-1008.

  • Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposit. Lithos 55, 229-272.

  • Yang, Y., Zhang, J., Yang, Y.F. & Shi, Y.X., 2009. Fluid inclusions geochemistry and ore genesis of Shangfanggou Mo-Fe deposit in Luanchuan County, Henan Province. Acta Petrologica Sinica 25, 2563-2574.

  • Yang, Y.F., Chen, Y.J., Li, N., Mi, M., Xu, Y.L., Li, F.L. & Wanc, S.Q., 2013. Fluid inclusion and isotope geochemistry of the Qian’echong giant porphyry Mo deposit, Dabie Shan, China: a case of NaCl-poor, CO2- rich fluid systems. Journal of Geochemical Exploration 124, 1-13.

  • Yang, Y.F., Li, N. & Chen, Y.J., 2012. Fluid inclusion study of the Nannihu giant porphyry Mo-W deposit, Henan Province, China: implications for the nature of por phyry ore-fluid systems formed in a continental collision setting. Ore Geology Reviews 46, 83-94.

  • Zarasvandi, A., Liaghat, S. & Zentilli, M., 2005. Geology of the Darreh-Zerreshk and Ali-Abad porphyry copper deposit, central Iran. International Geology Review 47, 620-646.

  • Zarasvandi, A., Liaghat, S. Zentilli, M. & Reynolds, P.H., 2007. 40Ar/39Ar geochronology of alteration and petrogenesis of porphyry copper-related granitoids in the Darreh-Zerreshk and Ali-Abad area, central Iran. Exploration and Mining Geology 16, 11-24.

  • Zhang, Y. & Frantz, J.D., 1987. Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusion. Chemical Geology 64, 335-350.

  • Zhong, J., Chen, Y.J., Chen, J., Li, N., Li, J., Qi, J.P. & Mao- Chang, D.A.I., 2011. Fluid inclusion study of Luoboling porphyry Cu-Mo deposit in Zijinshan ore field, Fujian Province. Acta Petrologica Sinica 27, 1410-1424.

Geologos

The Journal of Adam Mickiewicz University

Journal Information


CiteScore 2016: 1.31

SCImago Journal Rank (SJR) 2016: 0.469
Source Normalized Impact per Paper (SNIP) 2016: 0.805


Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15 15 15
PDF Downloads 3 3 3