The late Silurian–Middle Devonian long-term eustatic cycle as a possible control on the global generic diversity dynamics of bivalves and gastropods

Open access


A long-term eustatic cycle (fall and subsequent rise of the global sea level) embraced the late Silurian-Middle Devonian time interval. Potentially, these sea-level changes could drive global biodiversity. The stratigraphic ranges of 204 bivalve genera and 279 gastropod genera included into the famous Sepkoski database allow reconstructing changes in the total diversity and the number of originations and extinctions of these important groups of marine benthic macro- -invertebrates during this interval. None of the recorded parameters coincided with the long-term global sea-level cycle. It cannot be not excluded, however, that the global sea-level changes did not affect the regions favourable for bivalve and gastropod radiation because of regional tectonic mechanisms; neither can it be excluded that the eustatic control persisted together with many other extrinsic and intrinsic controls. Interestingly, the generic diversity of gastropods increased together with a cooling trend, and vice versa. Additionally, the Ludlow, Eifelian, and Givetian biotic crises affected, probably, both fossil groups under study. There was also a coincidence of the relatively high bivalve generic diversity, initial radiation of gastropods and the entire biota, and the diversification of brachiopods with the Early Devonian global sea-level lowstand, and this may be interpreted as evidence of a certain eustatic control on the marine biodiversity.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aberhan M. & Kiessling W. 2012. Phanerozoic marine biodiversity - a fresh look at data methods patterns and processes. [In:] J.A. Talent (Ed.): Earth and life:global biodiversity extinction intervals and biogeographicperturbations through time. Springer Dordrecht 3-22.

  • Alroy J. Aberhan M. Bottjer D.J. Foote M. Fürsich F.T. Harries P.J. Hendy A.J.W. Holland S.M. Ivany L.C. Kiessling W. Kosnik M.A. Marshall C.R. McGowan A.J. Miller A.I. Olszewski T.D. Patzkowsky M.E. Peters S.E. Viller L. Wagner P.J. Bonuso N. Borkow P.S. Brenneis B. Clapham M.E. Fall L.M. Ferguson C.A. Hanson V.L. Krug A.Z. Layou K.M. Leckey E.H. Nürnberg S. Powers C.M. Sessa J.A. Simpson C. Tomašových A. & Visaggi C.C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321 97-100.

  • Baird G.C. Zambito IV J.J. & Brett C.E. 2012. Genesis of unusual lithologies associated with the Late Middle Devonian Taghanic biocrisis in the type Taghanic succession of New York State and Pennsylvania. PalaeogeographyPalaeoclimatology Palaeoecology 367/368 121-136.

  • Bambach R.K. 2006. Phanerozoic biodiversity and mass extinctions. Annual Review of Earth and PlanetarySciences 34 127-155.

  • Benton M.J. 1995. Diversification and extinction in the history of life. Science 268 52-58.

  • Benton M.J. 2001. Biodiversity on land and in the sea. Geological Journal 36 211-230.

  • Benton M.J. & Emerson B.C. 2007. How did life become so diverse? The dynamics of diversification according to the fossil record and molecular phylogenetics. Palaeontology 50 23-40.

  • Blodgett R.B. Rohr D.M. & Boucot A.J. 1990. Early and Middle Devonian gastropod biogeography. [In:] W.S. McKerrow & C.R. Scotese (Eds): Palaeozoic Palaeogeographyand Biogeography. Geological Society Memoir 12 277-284.

  • Calner M. 2005a. Silurian carbonate platforms and extinction events - ecosystem changes exemplified from Gotland Sweden. Facies 51 584-591.

  • Calner M. 2005b. A Late Silurian extinction event and anachronistic period. Geology 33 305-308.

  • Catuneanu O. 2006. Principles of sequence stratigraphy. Elsevier Amsterdam 375 pp.

  • Conrad C.P. & Husson L. 2009. Influence of dynamic topography on sea level and its rate of change. Lithosphere 1 110-120.

  • Curry G.B. & Brunton C.H.C. 2007. Stratigraphic distribution of brachiopods. [In:] P.A. Selden (Ed.): Treatiseon invertebrate paleontology 6-H. Brachiopoda. Revised. Geological Society of America Boulder/University of Kansas Lawrence 2901-3081.

  • Foote M. 2003. Origination and extinction through the Phanerozoic - a new approach. Journal of Geology 111 125-148.

  • Foote M. 2007. Extinction and quiescence in marine animal genera. Paleobiology 33 261-272.

  • Forney G.G. Boucot A.J. & Rohr D.M. 1981. Silurian and Lower Devonian zoogeography of selected moluscan genera. [In:] J. Gray A.J. Boucot & W.B.N. Berry (Eds): Communities of the past. Hutchinson Ross Stroudsberg 119-164.

  • Frýda J. 2012. Phylogeny of Palaeozoic gastropods Inferred from their ontogeny. [In:] J.A. Talent (Ed.): Earth and life - global biodiversity extinction intervalsand biogeographic perturbations through time. Springer Dordrecht 395-435.

  • Hallam A. & Wignall P.B. 1997. Mass extinctions and theiraftermath. Oxford University Press Oxford 320 pp.

  • Hallam A. & Wignall P.B. 1999. Mass extinctions and sea-level changes. Earth-Science Reviews 48 217-250.

  • Haq B.U. & Al-Qahtani A.M. 2005. Phanerozoic cycles of sea-level change on the Arabian Platform. GeoArabia 10 127-160.

  • Haq B.U. & Schutter S.R. 2008. A chronology of Paleozoic sea-level changes. Science 322 64-68.

  • Heildelberger D. 2001. Mitteldevonische (Givetische) Gastropoden (Mollusca) aus der Lahnmuld (südliches Rheinisches Schiefergebirge). Geologische AbhandlungenHessen 106 291 pp.

  • House M.R. 2002. Strength timing setting and cause of mid-Palaeozoic extinctions. Palaeogeography PalaeoclimatologyPalaeoecology 181 5-25.

  • Jeppson L. Talent J.A. Mawson R. Andrew A. Corradini C. Simpson A.J. Wigforss-Lange J. & Schönlaub H.P. 2012. Late Ludfordian correlations and the Lau Event. [In:] J.A. Talent (Ed.): Earth and life - globalbiodiversity xxtinction intervals and biogeographic perturbationsthrough time. Springer Dordrecht 653-675.

  • Joachimski M.M. Breisig S. Buggisch W. Talent J.A. Mawson R. Gereke M. Morow J.R. Day J. & Weddige K. 2009. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite. Earth andPlanetary Science Letters 284 599-609.

  • Johnson M.E. 2006. Relationship of Silurian sea-level fluctuations to oceanic episodes and events. GFF 128 115-121.

  • Johnson M.E. 2010. Tracking Silurian eustasy: alignment of empirical evidence or pursuit of deductive reasoning? Palaeogeography Palaeoclimatology Palaeoecology 296 276-284.

  • Jones R.W. 2011. Applications of palaeontology - techniquesand case studies. Cambridge University Press Cambridge 406 pp.

  • Kříž J. Degardin J.M. Ferretti A. Hansch W. Gutiérrez Marco J.C. Paris F. Piçarra-D-Almeida J.M. Robardet M. Schönlaub H.P. & Serpagli E. 2003. Silurian stratigraphy and paleogeography of Gondwanan and Perunican Europe. [In:] E. Landing & M.E. Johnson (Eds): Silurian lands and seas - paleogeography outsideof Laurentia. New York State Museum Bulletin 493 105-178.

  • Lovell B. 2010. A pulse in the planet: regional control of high-frequency changes in relative sea level by mantle convection. Journal of the Geological Society London 167 637-648.

  • McGhee G.R. 1996. The Late Devonian mass extinction - theFrasnian-Famennian crisis. Columbia University Press New York 303 pp.

  • McRoberts C.A. & Aberhan M. 1997. Marine diversity and sea-level changes: numerical tests for association using Early Jurassic bivalves. International Journal ofEarth Sciences 86 160-167.

  • Menning M. Alekseev A.S. Chuvashov B.I. Davydov V.I. Devuyst F.-X. Forke H.C. Grunt T.A. Hance L. Heckel P.H. Izokh N.G. Jin Y.-G. Jones P.J. Kot lyar G.V. Kozur H.W. Nemyrovska T.I. Schneider J.W. Wang X.-D. Weddige K. Weyer D. & Work D.M. 2006. Global time scale and regional stratigraphic reference scales of central and West Europe East Europe Tethys South China and North America as used in the Devonian-Carboniferous-Permian Correlation Chart 2003 (DCP 2003). Palaeogeography Palaeoclimatology Palaeoecology 240 318-372.

  • Moucha R. Forte A.M. Mitrovica J.X. Rowley D.B. Quere S. Simons N.A. & Grand S.P. 2008. Dynamic topography and long-term sea-level variations: there is no such thing as a stable continental platform. Earth and Planetary Science Letters 271 101-108.

  • Newell N.D. 1967. Revolutions in the history of life. Geological Society of America Special Paper 89 63-91.

  • Ogg J.G. Ogg G. & Gradstein F.M. 2008. The concise geologic time scale. Cambridge University Press Cambridge 177 pp.

  • Peters S.E. & Foote M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27 583-601.

  • Peters S.E. & Heim N.A. 2011. Stratigraphic distribution of marine fossils in North America. Geology 39 259-262.

  • Purdy E.G. 2008. Comparison of taxonomic diversity strontium isotope and sea-level patterns. International Journal of Earth Sciences 97 651-664.

  • Racki G. 2005. Towards understanding Late Devonian global events: few answers many questions. [In:] D.J. Over J.R. Morrow & P.B. Wignall (Eds): Understanding Late Devonian and Permian-Triassic biotic and climatic events - towards an integrated approach. Elsevier Amsterdam 5-36.

  • Ruban D.A. 2007. Jurassic transgressions and regressions in the Caucasus (northern Neotethys Ocean) and their influences on the marine biodiversity. Palaeogeography Palaeoclimatology Palaeoecology 251 422-436.

  • Ruban D.A. 2010a. Do new reconstructions clarify the relationships between the Phanerozoic diversity dynamics of marine invertebrates and long-term eustatic trends? Annales de Paléontologie 96 51-59.

  • Ruban D.A. 2010b. Palaeoenvironmental setting (glaciations sea level and plate tectonics) of Palaeozoic major radiations in the marine realm. Annales de Paléontologie 96 143-158.

  • Ruban D.A. 2011a. Do outdated palaeontological data produce just a noise? An assessment of the Middle Devonian-Mississippian biodiversity dynamics in central Asia on the basis of Soviet-time compilations. Geologos 17 29-47.

  • Ruban D.A. 2011b. Lochkovian (earliest Devonian) transgressions and regressions along the “Tethyan” margin of Gondwana: a review of lithostratigraphical data. Gondwana Research 20 739-744.

  • Ruban D.A. 2012. Reply to “Comment: Taxonomic diversity structure of Silurian crinoids: Stability versus dynamism” by S.K. Donovan. Annales de Paléontologie 98 317-320.

  • Ruban D.A. & van Loon A.J. 2008. Possible pitfalls in the procedure for paleobiodiversity-dynamics analysis. Geologos 14 37-50.

  • Ruban D.A. Zorina S.O. Conrad C. P. & Afanasieva N.I. 2012. In quest of Paleocene global-scale transgressions and regressions: constraints from a synthesis of regional trends. Proceedings of the Geologists’ Associations 123 7-18.

  • Sandoval J. O’Dogherty L. & Guex J. 2001a. Evolutionary rates of Jurassic ammonites in relation to sea-level fluctuations. Palaios 16 311-335.

  • Sepkoski J.J. 1993. Ten years in the library: New data confirm paleontological patterns. Paleobiology 19 43-51.

  • Sepkoski J.J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363 560 pp.

  • Sepkoski J.J. Bambach R.K. Raup D.M. & Valentine J.W. 1981. Phanerozoic marine diversity and fossil record. Nature 293 435-437.

  • Smith A.B. & McGowan A.J. 2011. The ties linking rock and fossil records and why they are important for palaeobiodiversity studies. [In:] A.J. McGowan & A.B. Smith (Eds): Comparing the geological and fossil records - implications for biodiversity studies. Geological Society London Special Publications 358 1-7.

  • Stanley S.M. 2007. An analysis of the history of marine animal diversity. Paleobiology 33 (sp6) 1-55.

  • Veeken P.C.H. 2006. Seismic stratigraphy basin analysis and reservoir characterisation. Elsevier Amsterdam 509 pp.

  • Walliser O.H. 1996. Global events in the Devonian and Carboniferous. [In:] O.H. Walliser (Ed.): Global events and event stratigraphy in the Phanerozoic. Springer Berlin 225-250.

  • Zambito J.J. IV Brett C.E. & Baird G.C. 2012. The Late Middle Devonian (Givetian) global Taghanic biocrisis in its type area (Northern Appalachian Basin): geologically rapid faunal transitions driven by global and local environmental changes. [In:] J.A.S. Talent (Ed.): Earth and life - global biodiversity extinction intervals and biogeographic perturbations through time. Springer Dordrecht 677-703.

  • Žigaitė Ž. Joachimski M. Lehnert O. & Brazauskas A. 2010. δ18O composition from conodont apatite indicates climate cooling during the Middle Pridoli. Palaeogeography Palaeoclimatology Palaeoecology 294 242-247.

Journal information
Impact Factor

CiteScore 2018: 1.19

SCImago Journal Rank (SJR) 2018: 0.306
Source Normalized Impact per Paper (SNIP) 2018: 0.937

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 129 65 1
PDF Downloads 66 47 0