The physico-chemical diversity of pit lakes of the Muskau Arch (Western Poland) in the context of their evolution and genesis

Andrzej Pukacz 1 , Małgorzata Oszkinis-Golon 2 ,  und Marcin Frankowski 3
  • 1 Polish-German Research Institute at Collegium Polonicum, Adam Mickiewicz University, 69-100, Słubice, Poland
  • 2 Faculty of Biological Sciences, University of Zielona Góra, 65-516, Zielona Góra, Poland
  • 3 Department of Water and Soil Analysis, Faculty of Chemistry, Adam Mickiewicz University in Poznań, PL-61-614, Poznań, Poland

Abstract

In the vegetation seasons 2016–2017, a survey of 30 pit lakes localized in the eastern part of the Muskau Arch (Western Poland) was carried out. The aim of the study was to characterize the habitat conditions of the selected lakes, based on the physico-chemical water characteristics. We hypothesized that the age and genesis of pit lakes are the main factors responsible for their hydro-chemical diversity. Therefore, in each of the lakes 27 physico-chemical parameters and chlorophyll a were measured in the water surface, in the peak of the vegetation season (July–August). Additionally, they were described in terms of genesis, origin and age. The results showed that the investigated lakes display a high diversity of habitat conditions reflected in varied physico-chemical water properties (significant lake-to-lake differences). The parameters mostly responsible for the differences were: Secchi depth (transparency), pH, EC, colour, hardness, TP, TN, TC, Ca2+, Mg2+, Fe, Al, Mn, S and Chl a. The comparison of the type of excavated aggregate showed significant differences for four parameters only. Much greater differences were found for the genesis of lakes (mining method) – 15 of the 28 analysed parameters significantly differentiated the lakes. Further analysis showed that half of the studied parameters were significantly correlated with the age of the pit lakes. Our results suggest that in addition to natural changes, secondary human-caused transformations (mostly neutralization and fertilization of the water) were among the key factors responsible for the differentiation of the lakes.

Falls das inline PDF nicht korrekt dargestellt ist, können Sie das PDF hier herunterladen.

  • Baird R., Bridgewater L., 2017, Standard methods for the examination of water and wastewater, American Public Health Association, Washington.

  • Blanchette M.L., Lund M.A., 2016, Pit lakes are a global legacy of mining: an integrated approach to achieving sustainable ecosystems and value for communities, Curr. Opin. Environ. Sustainability 23: 28–34.

  • Boehrer B., 2013, Physical properties of acidic pit lakes, [in:] Geller W, Schultze M, Kleinmann R, Wolkersdorfer C. (eds), Acidic pit lakes, Springer, Berlin-Heidelberg: 23–42.

  • Brugam R.B., Lusk M., 1986, Diatom evidence for neutralization in acid surface mine lakes, [in:] Smol J.P., Battarbee R.W., Davis R.B, Meriläinen J. (eds), Diatoms and lake acidity, Dr W. Junk Publishers, Dordrecht: 115–129.

  • Dawczyk G., Maciantowicz M., 2014, Dawne górnictwo i kolejnictwo na terenie Łuku Mużakowa – Aus der Geschichte des Bergbaus Und der Bahn im Muskauer Faltenbogen (Former mining and railway in the area of the Muskau Arch), Wydaw. Drukarnia Chroma, Żary, 90 pp (in Polish, English summary).

  • Dojlido J., Best G.A., 1993, Chemistry of water and water pollution, E. Horwood Ltd., New York, 363 pp.

  • Friese K., Herzsprung P., Schultze M., 2013, Limnochemistry of water and sediments of acidic pit lakes, [in:] Geller W, Schultze M, Kleinmann R, Wolkersdorfer C. (eds), Acidic pit lakes, Springer-Verlag, Berlin-Heidelberg: 42–75.

  • Golterman H.L, 1969, Methods for chemical analysis of fresh waters, Blackwell Scientific, Oxford-Edinburgh, 172 pp.

  • Jędrczak A., 1992, Skład chemiczny wód pojezierza antropogenicznego w Łuku Mużakowskim (Chemical composition of the waters of the anthropogenic lakeland in the Muskau Arch), Wydaw. WSI Ziel. Góra, Zielona Góra, 132 pp (in Polish, English summary).

  • Jędrczak A., Jachimko B., Najbar B., 1998, Zmiany fizyczno-chemicznych cech wód największego zbiornika meromiktycznego na pojezierzu antropogenicznym w okresie kilkunastu lat (Changes in the physico-chemical properties of water in the largest meromictic pit lakes in the anthropogenic lakeland over a dozen years), Zesz. Nauk. PZ – Inż. Środ. 116: 5–17 (in Polish, English summary).

  • Kasztelewicz Z., 2012, Blaski i cienie górnictwa wêglowego w Polsce (Pros and cons of coal mining in Poland), Polityka Energetyczna 15(4): 7–27 (in Polish, English summary).

  • Koschorreck M., Tittel J., 2002, Benthic photosynthesis in an acidic mining lake (pH 2.6), Limnol. Oceanogr. 47(4): 1197–1201.

  • Koźma J., 2016, Antropogeniczne zmiany krajobrazu związane z dawnym górnictwem węgla brunatnego na przykładzie polskiej części obszaru łuku Mużakowa (Anthropogenic landscape changes connected with the old brown coalmining based on the example of the Polish part of the Muskau Arch area), Gór. Odkryw. 57(4): 5–13 (in Polish, English summary).

  • Koźma J., Kupetz M., 2008, The transboundary Geopark Muskau Arch, Prz. Geol. 56(8/1): 692–698.

  • Kupetz M., 1997, Geologischer bau und genese der Stauchendmoräne Muskauer Faltenbogen (Geological structure and genesis oft he Muskau push moraine) Brandenburg. Geowiss. Beitr. 4(2): 1–20 (in German).

  • Lutyńska S., Labus L., 2015, Identification of processes controlling chemical composition of pit lakes waters located in the eastern part of Muskau Arch (Polish-German borderland), Arch. Environ. Prot. 41(3): 60–69.

  • Lessmann D., Uhlmann W., Gruyoungald U., Nixdorf B., 2003, Sustainability of the flooding of brown coal mining lakes as a remediation technique against acidification in the Lusatian mining district, Germany, [in:] Proceedings of the 6th International Conference on Acid Rock Drainage (ICARD), 14–17 July 2003, Cairns (Australia): 521–527.

  • Marszelewski W., Dembowska E.A., Napiórkowski P., Solarczyk A., 2017, Understanding abiotic and biotic conditions in post-mining pit lakes for efficient management: A case study (Poland), Mine Water Environ. 36(3): 418–428.

  • Matejczuk W., 1986, Charakterystyka ekologiczna zbiorników wodnych w wyrobiskach poeksploatacyjnych węgla brunatnego (Ecological characteristic of pit lakes in the coal mining excavations) [PhD Thesis], Politechnika Wrocławska, Instyt. Inż. Ochr. Środ., Wrocław, 122 pp (in Polish, English summary).

  • Matejczuk W., 1989, Plankton poeksploatacyjnych zbiorników wodnych z rejonu Trzebiela (Plankton of the pit lakes in the mining excavations in Trzebiel area), [in:] Radkiewicz J. (ed.), Przyroda Środkowego Nadodrza, Wydaw. WSP Ziel. Góra, Zielona Góra: 93–118 (in Polish, English summary).

  • Moser M., Weisse T., 2011, The most acidified Austrian lake in comparison to a neutralized mining lake, Limnologica 41(4): 303–315.

  • Mostofa K.M.G., Yoshioka T., Mottaleb A., Vione D., 2013, Photobiogeochemistry of organic matter: Principles and practices in water environments, Springer, Berlin-Heidelberg, 917 pp.

  • Najbar B., Jędrczak A., 1998, Stopień zeutrofizowania wód zbiorników pojezierza antropogenicznego (The scale of water eutrophication in the reservoirs of the anthropogenic lakeland), Zesz. Nauk. PZ – Inż. Środ. 116: 19–37 (in Polish, English summary).

  • Nixdorf B., Wollmann K., Deneke R., 1998, Ecological potentials for planktonic development and food web interactions in extremely acidic mining lakes in Lusatia, [in:] Geller W., Klapper H., Salomons W. (eds), Acidic mining lakes, Springer, Berlin-Heidelberg: 147–167.

  • Nixdorf B., Uhlmann W., Lessmann D., 2010, Potential for remediation of acidic mining lakes evaluated by hydrogeochemical modelling: Case study Grünewalder Lauch (Plessa 117, Lusatia/Germany), Limnologica 40: 167–174.

  • Rzymski P., Klimaszyk P., Marszelewski W., Borowiak D., Mleczek M., Nowiński K., Pius B., Niedzielski P., Poniedziałek B., 2017, The chemistry and toxicity of discharge waters from copper mine tailing impoundment in the valley of the Apuseni Mountains in Romania, Environ. Sci. Pollut. Res. 24(26): 21445–21458.

  • Samecka-Cymerman A., Kempers A.J., 2004, Toxic metals in aquatic plants surviving in surface water polluted by copper mining industry, Ecotoxicol. Environ. Saf. 59(1): 64–69.

  • Schultze M., Boehrer B., Kuehn B., Büttner O., 2002, Neutralisation of acidic mining lakes with river water, Verh. Int.Verein. Limnol. 28: 936–939.

  • Schultze M., Boehrer B., 2008, Development of two meromictic pit lakes – a case study from the former brown coal mine Merseburg-Ost, Germany, [in:] Proc. of the 10th IMWA Congress: Mine Water and the Environment, 2–5 June 2008, Karlovy Vary: 611–614.

  • Schultze M., Pokrandt K-H., Hille W., 2010, Pit lakes of the Central German brown coal mining district: Creation, morphometry and water quality aspects, Limnologica 40(2): 148–155.

  • Schultze M., Boehrer B., Geller W., 2013, Morphology, Age and Development of Pit lakes, [in:] Geller W., Schultze M., Kleinmann R., Wolkersdorfer C. (eds), Acidic pit lakes, Springer, Berlin-Heidelberg: 265–291.

  • Sienkiewicz E., Gąsiorowiski M., 2016, The evolution of a mining lake – From acidity to natural neutralization, Sci. Total Environ. 557–558: 343–353.

  • Skoczyńska-Gajda S., Labus M., 2011, Metal speciation in river bed sediments within the Polish part of Muskau Arch Geopark, Arch. Env. Protect. 37(3): 87–92.

  • Wendt-Potthoff K., Frommichen R., Herzsprung P., Koschorreck M., 2002, Microbial Fe(III) reduction in acidic mining lake sediments after addition of an organic substrate and lime, Water Air Soil Pollut. Focus 2(3): 81–96.

  • Wetzel R.G., 2001, Limnology: Lake and river ecosystems, Academic Press, San Diego, 1006 pp.

  • Zioła-Frankowska A., Frankowski M., 2017, Determination of selected metals in wines using inductively coupled plasma optical emission spectrometry with mini torch, Food Anal. Methods 10(1): 180–190.

OPEN ACCESS

Zeitschrift + Hefte

Suche