Tracking climate signals in varved lake sediments: research strategy and key sites for comprehensive process studies in the Masurian Lakeland

Wojciech Tylmann 1 , Paulina Głowacka 1  and Agnieszka Szczerba 1
  • 1 University of Gdańsk, Faculty of Oceanography and Geography, Environmental Change Reconstruction Laboratory, 80-309, Gdańsk, Poland


Lake sediments are excellent archives of environmental and climate change. Especially important are varved sediments which can provide high-resolution (annual) records of those changes. Process studies including limnological measurements, particle flux monitoring and analyses of sediment structures give an opportunity to explain relationships between meteorological conditions, in-lake processes and varve formation. In our study, three lakes were selected in the Masurian Lakeland: Lake Żabińskie, Łazduny and Rzęśniki. These relatively small and deep lakes contain well preserved biogenic varves. The lakes are influenced by the same meteorological conditions but differ in terms of their catchment size, land use, hydrology, lake basin morphology and trophic status. To explore the relationships between different parameters and preservation/transformation of climate signals in the sediments we started systematic limnological measurements in the water column of these lakes, water sampling for hydrochemical analyses, monitoring of modern sedimentation using sediment traps and analysis of topmost varves from short sediment cores. With this comprehensive and high-resolution monitoring program scheduled for at least four years we are going to verify the potential of varves to track short-term meteorological phenomena in lake sediments.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Battarbee R. W., 1986, Diatom analysis, [in:] Berglund BE (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology, Wiley-Interscience, New York: 527–570.

  • Bednarek R., Prusinkiewicz Z., 1999, Geografia gleb (Soil Geography), PWN, Warszawa, 287 pp (in Polish).

  • Bigler C., Gälman V., Maier D., Renberg I., 2012, Calibrating the biological record in Nylandssjön: Diatom assemblages in the water column, sediment traps and varves since 2001, Terra Nostra 1012: 25–27.

  • Bluszcz P., Kirilova E., Lotter A. F., Ohlendorf C., Zolitschka B., 2008, Global Radiation and Onset of Stratification as Forcing Factors of Seasonal Carbonate and Organic Matter Flux Dynamics in Hypertrophic Hardwater Lake (Sacrower See, Northeastern Germany), Aquat. Geochem. 14: 73–98.

  • Bonk A., Tylmann W., Amann B., Enters D., Grosjean M., 2015a, Modern limnology and varve-formation processes in Lake Żabińskie, northeastern Poland: comprehensive process studies as a key to understand the sediment record, J. Limnol. 74: 358–370.

  • Bonk A., Tylmann W., Goslar T., Wacnik A., Grosjean M., 2015b, Comparing varve counting and 14C-AMS chronologies in the sediments of Lake Żabińskie, northeastern Poland: Implications for accurate 14C dating of lake sediments, Geochronometria 42: 159–171.

  • Bonk A., Kinder M., Enters D., Grosjean M., Meyer-Jacob C., Tylmann W., 2016, Sedimentological and geochemical responses of Lake Żabińskie (north-eastern Poland) to erosion changes during the last millennium, J. Paleolimnol. 56: 239–252.

  • Butz C., Grosjean M., Fischer D., Wunderle S., Tylmann W., Rein B., 2015, Hyperspectral imaging spectroscopy: a promising method for the biogeochemical analysis of lake sediments, J Appl. Remote Sens. 9(1): 096031.

  • Butz C., Grosjean M., Tylmann W., 2017, Hyperspectral imaging of sedimentary bacterial pigments: a 1700-year history of meromixis from varved Lake Jaczno, northeast Poland, J. Paleolimnol. 58: 57–72.

  • Choiński A., 2007, Limnologia fizyczna Polski (Physical limnology of Poland), Wydaw. Nauk. UAM, Poznań, 548 pp (in Polish).

  • [CODGiK] Centralny Ośrodek Dokumentacji Geodezyjnej i Kartograficznej (Central Documentation Centre of Geodesy and Cartography), 2010, Orthophotomap (Digital Map), 1:2500, Retrieved from [Access 30 August 2017].

  • Francus P., Lamb H., Nakagawa T., Marshall M., Brown E., Suigetsu 2006 Project Members, 2009, The potential of high-resolution X-ray fluorescence core scanning: Applications in paleolimnology, PAGES Newsletter 17(3): 93–95.

  • Hernández-Almeida I., Grosjean M., Tylmann W., Bonk A., 2015, Chrysophyte cyst-inferred variability of warm season lake water chemistry and climate in northern Poland: training set and downcore reconstruction, J. Paleolimnol. 53: 123–138.

  • Hernández-Almeida I., Grosjean M., Przybylak R., Tylmann W., 2015, A chrysophyte-based quantitative reconstruction of winter severity from varved lake sediments in NE Poland during the past millennium and its relationship to natural climate variability, Quat. Sci. Rev. 122: 74–88.

  • Hernández-Almeida I., Grosjean M., Gómez Navarro J.J., Larocque-Tobler I., Bonk A., Enters D., Ustrzycka A., Piotrowska N., Przybylak R., Wacnik A., Witak M., Tylmann W., 2017, Resilience, rapid transitions and regime shifts: fingerprinting the responses of Lake Zabińskie (NE Poland) to climate variability and human disturbance since 1000 AD, Holocene 27: 258–270.

  • Jańczak J., 1999, Atlas jezior Polski. Tom 3: Jeziora Pojezierza Mazurskiego i Polski południowej (The atlas of Polish lakes. Vol.3: Masurian lakes and the southern part of Poland), Bogucki Wydaw. Nauk., Poznań, 240 pp (in Polish, English summary).

  • Kienel U., Vos H., Dulski P., Lücke, A., Moschen, R., Nowaczyk N., Schwab M.J., 2013, Modification of climate signals by human activities recorded in varved sediments (AD 1608–1942) of Lake Holzmaar (Germany), J. Paleolimnol. 50: 561–575.

  • Kienel U., Kirillin G., Brademann B., Plessen B., Lampe R., Brauer A., 2017, Effects of spring warming and mixing duration on diatom deposition in deep Tiefer See, NE Germany, J. Paleolimnol. 57: 37–49.

  • Lamoureux S., 1999, Spatial and interannual variations in sedimentation patterns recorded in nonglacial varved sediments from the Canadian High Arctic, J. Paleolimnol. 21: 73–84.

  • Larocque-Tobler I., Filipiak J., Tylmann W., Bonk A., Gosjean M., 2015, Comparison between chironomid-inferred mean-August temperature from varved Lake Żabińskie (Poland) and instrumental data since 1896 AD, Quat. Sci. Rev. 111: 35–50.

  • Leemann A., Niessen F., 1994, Varve formation and the climatic record in an Alpine proglacial lake: calibrating annually laminated sediments against hydrological and meteorological data, Holocene 4: 1–8.

  • Lorenc H., 2005, Atlas klimatu Polski (Climatic Atlas of Poland), Instytut Meteorologii i Gospodarki Wodnej, Warszawa, 116 pp (in Polish).

  • Lotter A.F., Birks H.J.B., 1997, The separation of the influence of nutrients and climate on the varve time-series of Baldeggersee, Switzerland, Aquat. Sci. 59: 362–375.

  • Lotter A.F., Lemcke G., 1999, Methods for preparing and counting biochemical varves, Boreas 28: 243–252.

  • Marszelewski W., Skowron R., 2006, Ice cover as an indicator of winter air temperature changes: case study of the Polish Lowland lakes, Hydrol. Sci. J. 51:2, 336–349.

  • Ohlendorf, C., Sturm, M., 2008, A modified method for biogenic silica determination. J. Paleolimnol. 39: 137–142.

  • Ojala A.E.K., Kosonen E., Weckström J., Korkonen S., Korhola A., 2013, Seasonal formation of clastic-biogenic varves: the potential for palaeoenvironmental interpretations, GFF 135: 237–247.

  • Özkundakci, D., Hamilton D.P., Gibbs M.M., 2011, Hypolimnetic phosphorus and nitrogen dynamics in a small, eutrophic lake with a seasonally anoxic hypolimnion, Hydrobiologia 661: 5–20.

  • PAGES 2k Consortium, 2013, Continental-scale temperature variability during the past two millennia, Nat. Geosci. 6: 339–346.

  • Pla S., Camarero L., Catalan J., 2003, Chrysophyte cyst relationships to water chemistry in Pyrenean lakes (NE Spain) and their potential for environmental reconstruction, J. Paleolimnol. 30: 21–34.

  • Schwab M. J., Błaszkiewicz M., Raab T., Wilmking M., Brauer A., 2017, ICLEA Final Symposium 2017: Abstract Volume and Excurion Guide, Scientific Technical Report STR 17/03, GFZ German Research Centre for Geosciences.

  • Stockhecke M., Anselmetti F.S., Meydan A.F., Odermatt D., Sturm M., 2012, The annual particle cycle in Lake Van (Turkey), Palaeogeogr. Palaeoclimatol. Palaeoecol. 333–334: 148–159.

  • Szumański A., 2000, Objaśnienia do Szczegółowej Mapy Geologicznej Polski, Arkusz Giżycko (104) (Explanation to the Detailed Geological Map of Poland, Sheet Giżycko (104)), Państwowy Instytut Geologiczny, Warszawa, 31 pp (in Polish).

  • Tiljander M., Ojala A., Saarinen T., Snowball I., 2002, Documentation of the physical properties of annually laminated (varved) sediments at a sub-annual to decadal resolution for environmental interpretation, Quat. Int. 88: 5–12.

  • Tylmann W., Szpakowska K., Ohlendorf C., Woszczyk M., Zolitschka B., 2012, Conditions for deposition of annually laminated sediments in small meromictic lakes: a case study of Lake Suminko (northern Poland), J. Paleolimnol. 47: 55–70.

  • Tylmann W., Zolitschka B., Enters D., Ohlendorf C., 2013, Laminated lake sediments in northeast Poland: distribution preconditions for formation and potential for paleoenvironmental investigation, J. Paleolimnol. 50: 487–503.

  • Wacnik A., Tylmann W., Bonk A., Goslar T., Meyer-Jacob C., Grosjean M., 2016, Determining the responses of vegetation to natural processes and human impacts in north-eastern Poland during the last millennium: Combined pollen, geochemical and historical data, Veg. Hist. Archaeobot. 25: 479–498.

  • Zolitschka B., Francus P., Ojala A.E.K., Schimmelmann A., 2015, Varves in lake sediments – a review, Quat. Sci. Rev. 117: 1–41.

  • Zolitschka B., 1996, Recent sedimentation in a High Arctic lake, northern Ellesmere Island, Canada, J. Paleolimnol. 16: 169–186.


Journal + Issues