Flow cytometry as a valuable tool to study cyanobacteria:A mini-review

Open access


Flow cytometry (FCM) is routinely used in medical and veterinary diagnostics although it is also widely applied in environmental studies, including phytoplankton investigations. Cyanobacteria are wide-spread photosynthetic microorganisms that attract attention due to their ecology and potential toxicity. Therefore, novel research tools are being applied in their investigation. This paper characterizes FCM as a technique that enables photopigments (chlorophylls and phycocyanin) expressed by cyanobacteria to be excited and their emission to be subsequently detected. This feature not only allows cells to be counted in a rapid manner but also enables a wide range of potential applications in ecological and biochemical studies. The main advantages of FCM, such as rapid, automatic and precise measurements requiring small sample volumes, are also discussed in this paper along with challenges including analyses of filamentous cyanobacteria and signal overlapping. It is expected that FCM will continue to be used in some fields of cyanobacterial studies.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Acuña A.M. Snellenburg J.J. Gwizdala M. Kirilovsky D. van Grondelle R. van Stokkum IH. 2016 Resolving the contribution of the uncoupled phycobilisomes to cyanobacterial pulse-amplitude modulated (PAM) fluorometry signals Photosynth. Res. 127(1): 91–102.

  • Adir N. 2005 Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant Photosynth. Res. 85(1): 15–32.

  • Ahn C.Y. Joung S.H. Yoon S.K. Oh H.M. 2007 Alternative alert system for cyanobacterial bloom using phycocyanin as a level determinant J. Microbiol. 45(2): 98–104.

  • Apeldoorn M.E. Egmond H.P. Speijers G.J.A. Bakker G.J.I. 2007 Toxins of cyanobacteria Mol. Nutr. Food Res. 51(1): 7–60.

  • Azevedo R. Rodriguez E. Figueiredo D. Peixoto F. Santos C. 2012 Methodologies for the study of filamentous cyanobacteria by flow cytometry Fresenius Environ. Bull. 21(8): 679–684.

  • Baran J. 2008 Nowa epoka cytometrii przepływowej – przewodnik po współczesnych cytometrach i ich zastosowanie (New time of flow cytometry – Applications of contemporary cytometers) Post. Biol. Kom. 24(Suppl. 24): 3–15 (in Polish English summary).

  • Becker A. Meister A. Wilhelm C. 2002 Flow cytometric discrimination of various phycobilin-containing phytoplankton groups in a hypertrophic reservoir Cytometry 48(1): 45–57.

  • Bold H.C Wynne M.J. 1985 Introduction to the Algae: Structure and Reproduction Prentice-Hall New Jersey 720 pp.

  • Brient L. Lengronne M. Bertrand E. Rolland D. Sipel A. Steinmann D. Baudin I. Legeas M. Le Rouzic B. Bormans M. 2008 A phycocyanin probe as a tool for monitoring cyanobacteria in freshwater bodies J. Environ. Monit. 10(2): 248–255.

  • Butler WL. 1978 Energy distribution in photochemical apparatus of photosynthesis Ann. Rev. Plant Physiol. 29: 345–378.

  • Campbell L. Nolla H.A. 1994 The importance of Prochlorococcuus to community structure in the central North Pacific Ocean Limnol. Oceanogr. 39(4): 954–961.

  • Cavalier-Smith T. 2002 The neomuran origin of archaebacteria the negibacterial root of the universal tree and bacterial megaclassification Int. J. Syst. Evol. Microbiol. 52: 7–76.

  • Cellamare M. Rolland A. Jacquet S. 2010 Flow cytometry sorting of freshwater phytoplankton J. Appl. Phycol. 22(1): 87–100.

  • Costa M. Costa-Rodrigues J. Fernandes M.H. Barros P. Vasconcelos V. Martins R. 2012 Marine cyanobacteria compounds with anticancer properties: a review on the implication of apoptosis Mar. Drugs 10(10): 2181–2207.

  • Davis D. 2007 Cell sorting by flow cytometry [in:] Macey M.G. (ed.) Flow cytometry: principles and applications Humana Press New York: 257–276.

  • Dennis M.A. Landman M. Wood S.A. Hamilton D. 2011 Application of flow cytometry for examining phytoplankton succession in two eutrophic lakes Water. Sci. Technol. 64(4): 999–1008.

  • Dubelaar G.B.J. Jonker R.R. 2000 Flow cytometry as a tool for the study of phytoplankton Sci. Mar. 64(2): 135–156.

  • Dudkowiak A. Olejarz B. Łukasiewicz J. Sikora J. Wiktorowicz K. 2011 Heavy metals effect on cyanobacteria Synechocystis aquatilis study using absorption fluorescence flow cytometry and photothermal measurement Int. J. Thermophys 32(4): 762–773.

  • Dziallas C. Pinnow S. Grossart H-P. 2011 Quantification of toxic and toxin-producing cyanobacterial cells by RING-FISH in combination with flow cytometry Limnol. Oceanogr. Methods 9(2): 67–73.

  • Garstka M. 2007 Strukturalne podstawy reakcji świetlnych fotosyntezy (Structural background of photosynthetic light reactions) Post. Biol. Kom. 34(3): 445–476 (in Polish English summary).

  • Glazer A.N. 1994 Phycobiliproteins-a family of valuable widely used fluorophores J. Appl. Phycol. 6(2): 105–112.

  • Hall D.O. Rao K.K. 1999 Photosynthesis Cambridge University Press Cambridge 214 pp.

  • Hammes F. Egli T. 2010 Cytometric methods for measuring bacteria in water: advantages pitfalls and applications Anal. Bioanal. Chem. 397(3): 1083–1095.

  • Ibrahim S.F. van den Engh G. 2007 Flow cytometry and cell sorting Adv. Biochem. Eng. Biotechnol. 106: 19–39.

  • Izydorczyk K. Tarczyńska M. 2005 Application of in vivo fluorescence measurement for monitoring of phytoplankton dynamics with a special emphasis on Cyanobacteria] Ecohydrol. Hydrobiol. 5(1): 35–41.

  • Jakubowska N. Szeląg-Wasielewska E. 2015 Toxic picoplanktonic cyanobacteria – Review Mar. Drugs. 13(3): 1497–1518.

  • Jordan P. Fromme P. Witt H.T. Klukas O. Saenger W. Krauss N. 2001 Three-dimensional structure of cyanobacterial photosystem I at 2.5 resolution Nature 411(6840): 909–917.

  • Kaczmarek A. Mackiewicz A. Leporowska E. Osawa T. 2002 Rola i miejsce cytometrii przepływowej w diagnostyce klinicznej (The role of flow cytometry in clinical diagnosis) Współcz. Onkol. 6(6): 366–373 (in Polish English summary).

  • Karczewski J. Poniedziałek B. Adamski Z. Rzymski P. 2014 The effects of the microbiota on the host immune system Autoimmunity 47(8): 494–504.

  • Karo O. Wahl A. Nicol S.B. Brachert J. Lambrecht B. Spengler H.P. Nauwelaers F. Schmidt M. Schneider C.K. Müller T.H. Montag T. 2008 Bacteria detection by flow cytometry Clin. Chem. Lab. Med. 46(7): 947–953.

  • Krause G.H. Weis E. 1991 Chlorophyll fluorescence and photosynthesis: the basics Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 313–349.

  • Leunert F. Grossart H.P. Gerhardt V. Eckert W. 2013 Toxicant induced changes on delayed fluorescence decay kinetics of cyanobacteria and green algae: a rapid and sensitive biotest PLoS ONE 8: e63127.

  • Lichtenthaler H.K. 1988 Applications of chlorophyll fluorescence in photosynthesis research stress physiology hydrobiology and remote sensing Springer Dordrecht 366 pp.

  • Liu T. Kong W. Chen N. Zhu J. Wang J. He X. Jin Y. 2016 Bacterial characterization of Beijing drinking water by flow cytometry and MiSeq sequencing of the 16S rRNA gene Ecol. Evol. 6(4): 923–934.

  • MacColl R. 2004 Allophycocyanin and energy transfer Biochim. Biophys. Acta 1657(2–3): 73–81.

  • Mankiewicz J. Tarczyńska M. Walter Z. Zalewski M. 2003 Natural toxins from Cyanobacteria Acta Biol. Cracov. Ser. Bot. 45(2): 9–20.

  • Maxwell K. Johnson G.N. 2000 Chlorophyll fluorescence – a practical guide J. Exp. Bot. 51(345): 659–668.

  • Melamed M.R. Mullaney P.F. Shapiro H.M. 1990 An historical review of the development of flow cytometers and sorters [in:] Melamed M.R. Lindmo T. Mendelsohn M.L. (eds) Flow cytometry and sorting Wiley-Liss New York: 1–8.

  • Murata N. Takahashi S. Nishiyama Y. Allakhverdiev S.I. 2007 Photoinhibition of photosystem II under environmental stress Biochim Biophys Acta 1767(6): 414–421.

  • Öberg J. 2016 Cyanobacteria blooms in the Baltic Sea. HELCOM Baltic Sea Environment Fact Sheets 2016. Retrieved from http://helcom.fi/baltic-sea-trends/environment-fact-sheets/eutrophication/cyanobacterial-blooms-in-the-baltic-sea [accessed 21 March 2017].

  • Olson R.J. Vaulot D. Chisholm S.W. 1985 Marine phytoplankton distributions measured using shipboard flow cytometry Deep-Sea Res. A 32(10): 1273–1128.

  • Oren A. 2011 Cyanobacterial systematic and nomenclature as featured in the International Bulletin of Bacteriological Nomenclature and Taxonomy / International Journal of Systematic Bacteriology / International Journal of Systematic and Evolutionary Microbiology Int. J. Syst. Evol. Microbiol. 61: 10–15.

  • Phinney D.A. Cucci T.L. 1989 Flow cytometry and phytoplankton Cytometry 10(5): 511–521.

  • Poniedziałek B. Rzymski P. Kokociński M. 2012 Cylindrospermopsin: water-linked potential threat to human health in Europe Environ. Toxicol. Pharmacol. 34(3): 651–660.

  • Poniedziałek B. Rzymski P. Kokociński M. Burchardt L. Wiktorowicz K. 2011 Zmiany fluorescencji chlorofilu Cylindrospermopsis raciborskii i Aphanizomenon flos-aquae pod wpływem soli ołowiu (Changes of Cylindrospermopsis raciborskii and Aphanizomenon flos-aquae chlorophyll fluorescence under the influence of lead) Ochr. Środ. Zas. Nat. 48: 513–519 (in Polish English summary).

  • Poniedziałek B. Rzymski P. Karczewski J. 2014 Increased apoptosis of regulatory T cells in Crohn’s disease Hepatogastroenterology 61(130): 382–384.

  • Readman J.W. Devilla R.A. Tarran G. Llewellyn C.A. Fileman T.W. Easton A. Burkill P.H. Mantoura R.F.C. 2004 Flow cytometry and pigment analyses as tools to investigate the toxicity of herbicides to natural phytoplankton communities Mar. Environ. Res. 58(2–5): 353–358.

  • Rzymski P. Brygider A. Kokociński M. 2017a On the occurrence and toxicity of Cylindrospermopsis raciborskii in Poland Limnol. Rev. 17(1): 23–29.

  • Rzymski P. Jaśkiewicz M. 2017 Microalgal food supplements from the perspective of Polish consumers: patterns of use adverse events and beneficial effects J. Appl. Phycol. 29(4): 1841–1850.

  • Rzymski P. Langowska A. Fliszkiewicz M. Poniedziałek B. Karczewski J. Wiktorowicz K. 2012 Flow cytometry as an estimation tool for honey bee sperm viability Theriogenology 77(8): 1642–1647.

  • Rzymski P. Poniedziałek B. Mankiewicz-Boczek J. Faassen E.J. Jurczak T. Gągała-Borowska I. Ballot A. Lürling M. Kokociński M. 2017b Polyphasic toxicological screening of Cylindrospermopsis raciborskii and Aphanizomenon gracile isolated in Poland Algal Res. 24: 72–80.

  • Rzymski P. Poniedziałek B. 2014a In search of environmental role of cylindrospermopsin: A review on global distribution and ecology of its producers Wat. Res. 66: 320–327.

  • Rzymski P. Poniedziałek B. 2014b Blue-green algae blooms: environmental and health consequences [in:] Lambert A. Roux C. (eds) Eutrophication. Causes economic implications and future challenges Nova Science Publishers New York: 155–181.

  • Rzymski P. Poniedziałek B. Kokociński M. Jurczak T. Lipski D. Wiktorowicz K. 2014a Interspecific allelopathy in cyanobacteria: Cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa Harmful Algae 35: 1–8.

  • Rzymski P. Poniedziałek B. Niedzielski P. Tabaczewski P. Wiktorowicz K. 2014b Cadmium and lead toxicity and bioaccumulation in Microcystis aeruginosa Front. Environ. Sci. Eng. 8(3): 427–433.

  • Rzymski P. Niedzielski P. Kaczmarek N. Jurczak T. Klimaszyk P. 2015 The multidisciplinary approach to safety and toxicity assessment of microalgae-based food supplements following clinical cases of poisoning Harmful Algae 46: 34–42.

  • Seckbach J. 2007 Algae and cyanobacteria in extreme environments Springer Dordrecht 811 pp.

  • Silva-Stenico M.E. Kaneno R. Zambuzi F.A. Vaz M.G. Alvarenga D.O. Fiore M.F. 2013 Natural products from cyanobacteria with antimicrobial and antitumor activity Curr. Pharm. Biotechnol. 14(9): 820–828.

  • Sinigalliano C.D. Winshell J. Guerrero M.A. Scorzetti G. Fell J.W. Eaton R.W. Brand L. Rein K.S. 2009 Viable cell sorting of dinoflagellates by multiparametric flow cytometry Phycologia 48(4): 249–257.

  • Sode K. Horikoshi K. Takeyama H. Nakamura N. Matsunaga T. 1991 On-line monitoring of Marine cyanobacterial cultivation based on phycocyanin fluorescence J. Biotechnol. 21(3): 209–217.

  • Tashyreva D. Elster J. Billi D. 2013 A novel staining protocol for multiparameter assessment of cell heterogeneity in Phormidium populations (cyanobacteria) employing fluorescent dyes PLoS ONE 8: e55283.

  • Tomo T. Akimoto S. Tsuchiya T. Fukuya M. Tanaka K. Mimuro M. 2008 Isolation and spectral characterization of Photosystem II reaction center from Synechocystis sp. PCC 6803 Photosynth. Res. 98(1–3): 293–302.

  • Vives-Rego J. Lebaron P. Nebe-von Caron G. 2000 Current and future applications of flow cytometry in aquatic microbiology FEMS Microbiol. Rev. 24(4): 429–448.

  • Whitton B.A. Potts M. 2000 The ecology of Cyanobacteria: their diversity in time and space Academic Publishers Dordrecht 632 pp.

  • Zhou Q. Chen W. Zhang H. Peng L. Liu L. Han Z. Wan N. Li L. Song L. 2012 A flow cytometer based protocol for quantitative analysis of bloom-forming cyanobacteria (Microcystis) in lake sediments J. Environ. Sci. 24(9): 1709–1716.

Journal information
Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 446 235 10
PDF Downloads 226 151 12