The use of expanded clay aggregate for the pretreatment of surface waters on the example of a tributary of Lake Klasztorne Górne in Strzelce Krajeńskie

Open access


The paper presents a proposal for the treatment of river water based on expanded clay (ceramsite). It is a lightweight mineral aggregate containing components relative to phosphorus adsorption (calcium, iron, manganese, aluminum). A pilot plant on a fractional technical scale was built on a nutrient rich (phosphorus up to 0.4 mg dm−3, nitrogen up to 10.0 mg dm−3), small (mean annual flow about 0.04 m3 s−1), natural watercourse (Młynówka River, a tributary of the Otok Channel, Noteć basin, the municipality of Strzelce Krajeńskie). The monitoring included quantitative and qualitative measurements of the water stream in 2014-2015. On the basis of the examinations, the calculated effectiveness of ceramsite filters in removing major contaminants from water was: for total nitrogen 5-6%, phosphorus 12-16%, and for suspensions 17-29%. The effectiveness of the treatment is highly influenced by hydraulic load, so this type application on a full-scale should occupy a sufficiently large volume. Taking into account simplicity of performance, ease of operation and low cost of construction and maintenance, such pretreatment plants based on expanded clay would seem to be a promising tool for the protection of surface waters in catchments of small rivers and streams.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Cooke G.D. Welch E.B. Peterson S.A. Nichols S.A. 2005 Restoration and Management of Lakes and Reservoirs Taylor & Francis/CRC Press Boca Raton 616 pp.

  • Drizo A. Frost C.A. Grace J. Smith K.A. 1999 Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems Water Res. 33(17): 3595–3602.

  • Grochowska J. Tandyrak R. Parszuto K. Augustyniak R. 2016 A proposal of protection techniques in the catchment of a lake in the context of improving its recreational value Limnol. Rev. 16(1): 33–40.

  • Hermanowicz W. Dojlido J. Dożańska W. Koziorowski B. Zerbe J. 1999 Fizyczno-chemiczne badanie wody i ścieków (Physical-chemical examination of water and wastewater) Wydaw. Arkady Warszawa 556 pp (in Polish).

  • Jenssen P.D. Mæhlum T. Krogstad T. 1993 Potential use of constructed wetlands for wastewater in northern environments Wat. Sci. Tech. 28(10): 149–157.

  • Jucherski A. Walczowski A. 2012 Wpływ wybranych makrofitów na skuteczność oczyszczania ścieków w stokowych złożach filtracyjnych gruntowo-roślinnych (Influence of selected macrophytes on sewage treatment effectiveness in the slope soil-vegetation filtration beds) PIR 20(1): 115–12 (in Polish English summary).

  • Kvarnstrom M.E. Morel C.A.L. Krogstad T. 2004 Plant-availability of phosphorus in filter substrates derived from small-scale wastewater treatment systems Ecol. Eng. 22(1): 1–15.

  • Łopata M. 2013 Rekultywacja jezior – metody uwarunkowania etapy działań (Restoration of lakes – methods conditions stages) [in:] Domagała J. Czerniawski R Pilecka-Rapacz M. (eds) Antropopresja na ekosystemy wodne a ochrona przyrody i aktywizacja rybactwa (Anthropopressure on aquatic ecosystems nature conservation and fisheries activation) Wydaw. USzczec Barlinek: 61–83 (in Polish English summary).

  • Łopata M. Sternicki R. 2014 Laboratory research on the efficacy of LWA in the purification of water [typescript] Dept. of Water Protection Engineering University of Warmia and Mazury Olsztyn 21 pp.

  • Łopata M. Czerniawski R. Czerniejewski P. Wiśniewski G. 2015a Możliwości wykorzystania modułów filtracyjnych do oczyszczania dopływów powierzchniowych jezior na przykładzie cieku Młynówka w Strzelcach Krajeńskich (The possibility of using the filter modules for the treatment of surface tributaries of lakes. A case study of watercourse Młynówka in Strzelce Krajeńskie) [in:] Wiśniewski R. (ed.) Ochrona i rekultywacja jezior (Lake protection and restoration) Wydaw. PZIiTS Toruń: 93–104 (in Polish English summary).

  • Łopata M. Wiśniewski G. Czerniawski R. Czerniejewski P. Brzozowska R. Jaworska B. Korzeniewska E. 2015b Rekultywacja Jeziora Klasztornego Górnego w Strzelcach Krajeńskich metodą inaktywacji fosforu i biomanipulacji (Restoration of Lake Klasztorne Górne in Strzelce Krajeńskie with phosphorous inactivation and biomanipulation methods) [in:] Wiśniewski R. (ed.) Ochrona i rekultywacja jezior (Lake protection and restoration) Wydaw. PZIiTS Toruń: 85–92 (in Polish English summary).

  • Masłoń A. Tomaszek J.A. 2010 Keramzyt w systemach oczyszczania ścieków (Use of the keramsite in wastewater treatment) Zesz. Nauk. PRzesz. Bud. Inż. Środ. 57(271): 85–98 (in Polish English summary).

  • Öövel M. Tooming A. Mauring T. Mander Ü. 2007 Schoolhouse wastewater purification in a LWA-filled hybrid constructed wetland in Estonia Ecol. Eng. 29(1): 17–26.

  • Sieńska J. Dunalska J. Łopata M. Szymański D. Wiśniewski G. 2015 Wpływ wielkości uziarnienia gliny ekspandowanej na efektywność usuwania fosforu (Effect of grain size light expanded clay aggregate on the efficiency of phosphorus compounds removal) Mat. XXIII Zjazdu Hydrobiologów Polskich 8–12 September 2015 Koszalin (Poland): 234–236 (in Polish English summary).

  • Soszka H. Pasztelaniec A. Kolada A. 2016 Is unstable reliable? Oxygen conditions in the ecological status assessment of lakes Limnol. Rev. 16(2): 85–94.

  • Vohla C. Alas R. Nurk K. Baatz S. Mander Ü. 2007 Phosphorus retention capacity in a horizontal subsurface flow constructed wetland Sci. Total Environ. 380: 66–74.

  • Vohla C. M. Kõiva H. Bavorb F. Chazarencc Ü. Mandera 2011 Filter materials for phosphorus removal from wastewater in treatment Ecol. Eng. 37(1): 70–89.

  • Wiśniewski R. 2004 Rekultywacja zbiorników wodnych. Od praktyki do teorii (Reclamation of water bodies. From practice to theory) [in:] Wiśniewski R. Jankowski J. (eds) Ochrona i rekultywacja jezior (Lake protection and restoration) Wydaw. PZIiTS Grudziądz: 239–245 (in Polish English summary).

  • Zhu T. Jenssen P.D. Mæhlum T. Krogstad T. 1997 Phosphorus sorption and chemical characteristics of light-weight aggregates (LWA) – potential filter media in treatment wetlands Wat. Sci. Tech. 35(5): 103–108.

  • Zhu T. Mæhlum T. Jenssen P.D. Krogstad T. 2003 Phosphorus sorption characteristics of a lightweight aggregate Wat. Sci. Tech. 48(5): 93–100.

Journal information
Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 217 105 5
PDF Downloads 122 78 0