The variability of summer phytoplankton in different types of lakes in North East Poland (Suwałki Landscape Park)

Open access

Abstract

This study describes summer phytoplankton communities in 27 lakes in the Suwałki Landscape Park (SLP) using in situ fluorescence methods. Low chlorophyll-a concentrations were noted in most of the studied lakes, particularly in the deepest lakes with highest surface area. Green algae, diatoms and cryptophyta were dominant components of lake phytoplankton. Higher chlorophyll-a concentrations in the shallow or more eutrophicated lakes were connected with an increase of cyanobacteria and cryptophyta concentrations as well as with a decrease in the share of diatoms inphytoplankton structure. Vertical distribution of phytoplankton in stratified lakes revealed the presence of deep chlorophyll layers just below the thermocline where the maximum concentrations of phytoplankton were up to 15 times higher than in the epilimnion zone. The deepest maximum concentration of phytoplankton was noted at a depth of 16.5 metres in Lake Jeglówek. In some lakes two or three significant increases of phytoplankton concentration in the vertical profile were observed, caused by intensive development of different algae groups.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Barbiero R.P. Tuchman M.L. 2004 The deep chlorophyll maximum in Lake Superior J. Great Lakes Res. 30(Suppl. 1): 256–268.

  • Berger S.A. Diehl S. Stibor H. Trommer G. Ruhenstroth M. Wild A. Weigert A. Jager C.G. Striebel M. 2007 Water temperature and mixing depth affect timing and magnitude of events during spring succession of the plankton Oecologia (Berl.) 150(4): 643–654.

  • Beutler M. Wiltshire K.H. Meyer B. Moldaenke C. Lüring C. Meyerhöfer M. Hansen U.-P. Dau H. 2002 A fluorometric method for the differentiation of algal populations in vivo and in situ Photosynth. Res. 72(1): 39–53.

  • Borowiak D. Nowiński K. Grabowska K. 2016 A new bathymetric survey of the Suwałki Landscape Park lakes Limnol. Rev. 16(4): 185–197.

  • Camacho A. Vincente E. Miracle M.R. 2001 Ecology of Cryptomonas at the chemocline of a karstic sulphate-rich lake Mar. Freshwater Res. 52: 805–815.

  • Camacho A. 2006 On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes Limnetica 25(1–2): 453–478.

  • Cantin A. Beisner B.E. Gunn J.M. Prairie Y.T. Winter J.G. 2011 Effects of thermocline deepening on lake plankton communities Can. J. Fish. Aquat. Sci. 68(2): 260–276.

  • Fasham M.J.R. Platt T. Irwin B. Jones K. 1985 Factors affecting the spatial pattern of the deep chlorophyll maximum in the region of the Azores front Prog. Oceanogr. 14: 129–165.

  • Fee E. J. 1976 The vertical and seasonal distribution of chlorophyll in lakes of the Experimental Lakes Area northwestern Ontario: Implications for primary production estimates Limnol. Oceanogr. 21(6): 767–783.

  • Gauthier J. Prairie Y.T. Beisner B.E. 2014 Thermocline deepening and mixing alter zooplankton phenology biomass and body size in a whole-lake experiment Freshwater Biol. 59(5): 998–1011.

  • Górniak A. 1996 Substancje humusowe i ich rola w funkcjonowaniu ekosystemów słodkowodnych (Humus substances and their role in the freshwater ecosystems functioning) Diss.Univ.Vars. 445 Wydaw. UW Warszawa 151 pp. (in Polish).

  • Górniak A. Karpowicz M. 2014 Development of crustacean plankton in a shallow polyhumic reservoir in the first 20 years after impoundment (northeast Poland) Inland Waters 4(3): 311–318.

  • Grabowska M. Konecka U. Górniak A. 2006 Summer phytoplankton of lakes in Suwałki Landscape Park Pol. J. Environ. Stud. 15(5d): 553–556.

  • Harrison J.W. Smith R.E.H. 2011 Deep chlorophyll maxima and UVR acclimation by epilimnetic phytoplankton Freshwater Biol. 56(5): 980–992.

  • Hutorowicz A. Napiórkowska-Krzebietke A. 2008 Zbiorowiska fitoplanktonu w jeziorze Hańcza (Phytoplanktom communities in Hańcza Lake) [in:] Kozłowski J. Poczyński P. Zdanowski B. (eds) Środowisko i ichtiofauna jeziora Hańcza (Enironment and ichtiofauna of Lake Hańcza) Wydaw. IRS Olsztyn: 93–102 (in Polish).

  • Jackson L.S. Stockner J.G. Harrison P.J. 1990 Contribution of Rhizosolenia eriensis and Cyclotella spp. to the deep chlorophyll maximum of Sproat lake British Columbia Canada Can. J. Fish. Aquat. Sci. 47(1): 128–135.

  • Jekatierynczuk-Rudczyk E. Grabowska M. Ejsmont-Karabin J. Karpowicz M. 2012 Assessment of trophic state of four lakes in the Suwałki Landscape Park (NE Poland) based on the summer phyto- and zooplankton in comparison with some physicochemical parameters [in:] Wołowski K. Kaczmarska I. Ehrman J. Wojtal A.Z. (eds) Phycological Reports: Current advances in algal taxonomy and its applications: phylogenetic ecological and applied perspective Inst. Bot. PAN Kraków: 205–225.

  • Jekatierynczuk-Rudczyk E. Zieliński P. Grabowska M. Ejsmont-Karabin J. Karpowicz M. Więcko A. 2014 The trophic status of Suwałki Landscape Park lakes based on selected parameters (NEPoland) Environ. Monit. Assess. 186(8): 5101–5121.

  • Kasprzak P. Gervais F. Adrian R. Weiler W. Radke R. Jager I. Riest S. Siedel U. Schneider B. Bohme M. Eckmann R. Walz N. 2000 Trophic characterization pelagic food web structure and comparison of two mesotrophic lakes in Brandenburg (Germany) Int.. Rev. Hydrobiol. 85: 167–189.

  • Kring S.A. Figary S.E. Boyer G.L. Watson S.B. Twiss M.R. 2014 Rapid in situ measures of phytoplankton communities using the bbe FluoroProbe: evaluation of spectral calibration instrument intercompatibility and performance range Can. J. Fish. Aquat. Sci. 71(7): 1087–1095.

  • Longhi M.L. Beisner B.E. 2009 Environmental factors controlling the vertical distribution of phytoplankton in lakes J. Plankton Res. 31(10): 1195–1207.

  • Lorenzen C.J. 1965 A note on the chlorophyll and phaeophytin content of the chlorophyll maximum Limnol. Oceanogr. 10(3): 482–483.

  • Mitręga J. Paczyński B. Płochniewski Z. 1993 Wody podziemne Suwalszczyzny (Groundwaters of Suwałki Region). Prz. Geol. 41(8): 569–574 (in Polish English summary).

  • Nusch E.A. 1980 Comparison of different methods for chlorophyll and phaeopigment determination Ergeb. Limnol. 14: 14–36.

  • Padisák J. Krienitz L. Scheffler W. Koschel R. Kristiansen J. Grigorszky I. 1998 Phytoplankton succession in the oligotrophic Lake Stechlin (Germany) in 1994 and 1995 Hydrobiologia 370: 179–197.

  • Reynolds C.S. 1992 Dynamics selection and composition of phytoplankton in relation to vertical structure in lakes Ergebn. Limnol. 35: 13–31.

  • Richerson P.J. Lopez M. Coon T. 1978 The deep chlorophyll maximum layer of Lake Tahoe Verh. Int. Ver. Limnol. 20: 426–433.

  • Sarnelle O. 1999 Zooplankton effects on vertical particle flux: testable models and experimental results Limnol. Oceanogr. 44(2): 357–370.

  • Spodniewska I. 1978 Phytoplankton as the indicator of lake eutrophication. I. Summer situation in 34 Masurian Lakes Ekol. Pol. 26(1): 53–70.

  • St. Amand A. Carpenter S. R. 1993 Metalimnetic phytoplankton dynamics [in] Carpenter S.R. Kitchell J.F. (eds) The trophic cascade in lakes Cambridge Univ. Press Cambridge: 210–224.

  • Stoermer E.F. Emmert G. Julius M.L. Schelske C.L. 1996 Paleolimnological evidence of rapid recent changes in Lake Eire’s trophic status Can. J. Fish. Aquat. Sci. 53(6): 1451–1458.

  • Twiss M.R. 2011 Variations in chromophoric dissolved organic matter and its influence on the use of pigment-specific fluorimeters in the Great Lakes J. Great Lakes Res. 37(1): 124–131.

  • Vincent W.F. Goldman C.R. 1980 Evidence for algal heterotrophy in Lake Tahoe California-Nevada Limnol. Oceanogr. 25(1): 89–99.

  • Zvikas A. 2005 Structure of microorganism communities and peculiarities of their activities in gypsum karst lakes of northern Lithuania [Summary of PhD Thesis] Institute of Botany Vilnius University Vilnius 37 pp.

Search
Journal information
Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 148 95 1
PDF Downloads 74 55 0