Variability of nutrient concentrations in sediments and wetland plants during the vegetation season under different sediment moisture conditions

Open access

Variability of nutrient concentrations in sediments and wetland plants during the vegetation season under different sediment moisture conditions

Changes of nutrient concentrations in sediments and plant biomass as well as above-ground biomass production of four emergent macrophytes during the vegetation season were studied. Particularly, variations over time in N:P and N:K ratios in sediments between sites with and without vegetation as well as seasonally flooded and permanently flooded sites were investigated. In plant covered sites, biomass production and nutrient concentrations in the four wetland plant species were measured monthly from March to September 2008. The study was conducted in the littoral zone of the polymictic Lake Niepruszewskie. The performed analyses of N, P and K concentrations in plants and sediments indicated that measurements of nutrients in plant biomass better reflected nutrient availability for plant growth than analyses of nutrient contents in sediments. The vegetation biomass and nutrient concentrations in plant biomass in the shallow littoral zone were more sensitive to changes of water depth in comparison with the permanently flooded part of the littoral zone. The present study showed that the N:P biomass ratio was a better indicator of moisture changes than the N:K ratio or individual nutrients. Preferences of the studied macrophytes for nutrient concentrations in sediments depended more on the N:P ratio in the sediment than N or P or K concentrations individually. Glyceria maxima preferred sites with high N and K concentrations (N:K=0.9) while Typha angustifolia occurred in sites with the lowest nutrient concentrations among the studied species (N:P and N:K = 0.1).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Barko J.W. James W.F. 1997 Effects of submerged aquatic macrophytes on nutrient dynamics sedimentation and resuspension [in:] Jeppesen E. Søndergaard M. Søndergaard M. Christoffersen K. (eds) The structuring role of submerged macrophytes in lakes Springer New York: 197-214.

  • Bremner J.M. Mulvaney C.S. 1982 Nitrogen-Total [in:] Page A.L. (ed.) Methods of soil analysis Part 2. Chemical and microbiological properties American Society of Agronomy Madison: 595-624.

  • Christensen P.B. Sørensen J. 1986 Temporal variation of denitrification activity in plant-covered littoral sediment from Lake Hampen Denmark Appl. Environ. Microbiol. 51(6): 1174-1179.

  • Ciecierska H. 2008 Macrophyte-based indices of the ecological state of lakes University of Warmia and Mazury Press Olsztyn p. 202.

  • Coops H. van den Brink F.W.B. van der Velde G. 1996 Growth and morphological responses of four helophyte species in an experimental water-depth gradient Aquat. Botany 54(1): 11-24.

  • Cyr H. McCabe S.K. Nürnberg G.K. 2009 Phosphorus sorption experiments and the potential for internal phosphorus loading in littoral areas of a stratified Lake Water Res. 43(6): 1654-1666.

  • Güsewell S. Koerselman W. 2002 Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology Evol. Systemat. 5(1): 37-61.

  • Güsewell S. 2005 Nutrient resorption of wetland graminoids is related to the type of nutrient limitation Functional Ecology 19(2): 344-354.

  • Hamilton D.P. Mitchell S.F. 1988 Effects of wind on nitrogen phosphorus and chlorophyll in a small New Zealand lake Verh. Int. Ver. Limnol. 23(1): 624-628.

  • Horppila J. Nurminen L. 2003 Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (southern Finland) Water Res. 37(18): 4468-4474.

  • James W.F. Barko J.W. 1990 Macrophyte influences on the zonation of sediment accretion and composition in a north-temperate reservoir Arch. Hydrobiol. 120(2): 129-142.

  • Jonasson S. Michelsen A. Schmidt I.K. Nielsen E.V. 1999 Responses in microbes and plants to changed temperature nutrient and light regimes in the arctic Ecology 80(6): 1828-1843.

  • Kiss M.K. Lakatos G. Borics G. Gidó Z. Deák C. 2003 Littoral macrophyte-periphyton complexes in two Hungarian shallow waters Hydrobiologia 506-509: 541-548.

  • Lenssen J.P.M. Menting F.B.J. van der Putten W.H. Blom C.W.P.M. 1999 Effects of sediment type and water level on biomass production of wetland plant species Aquat. Botany 64(2): 151-165.

  • Ławniczak A.E. 2006 Zróżnicowanie składu florystycznego zbiorowisk strefy litoralnej Jeziora Niepruszewskiego (Floristic diversity of the littoral zone communities in Lake Niepruszewskie) Pr. Komis. Nauk Roln. Leś. PTPN 100: 113-122 (in Polish English summary).

  • Ławniczak A.E. Zbierska J. Choiński A. 2009 Ocena stanu ekologicznego jezior w odniesieniu do Ramowej Dyrektywy Wodnej (Assessment of the ecological status of lakes according to Water Framework Directive) Zesz. Probl. Post. Nauk Roln. 540: 55-67 (in Polish).

  • Ławniczak A.E. 2010a The role of emergent macrophytes in nutrient cycling in Lake Niepruszewskie (western Poland) Oceanol. Hydrobiol. Stud. 39(2): 75-83.

  • Ławniczak A.E. 2010b Overgrowing of two polymictic lakes in Central-Western Poland Limnol. Rev. 10(3-4): 147-156.

  • Ławniczak A.E. Zbierska J. Choiński A. Szczepaniak W. 2010 Response of emergent macrophytes to hydrological changes in a shallow lake with special reference to nutrient cycling Hydrobiologia 656: 243-254.

  • Ławniczak A.E. 2011 Nitrogen phosphorus and potassium resorption efficiency and proficiency of four emergent macrophytes from nutrient-rich wetlands Pol. J. Environ. Stud. 20(5): 1227-1234.

  • Ławniczak A.E. Choiński A. Kurzyca I. 2011 Dynamics of lake morphometry and bathymetry in various hydrological conditions Pol. J. Environ. Stud. 20(4): 931-940.

  • Madsen T.V. Cedergreen N. 2002 Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream Freshwater Biol. 47(2): 283-291.

  • Marion L. Pallisson J.M. 2003 A mass balance assessment of the contribution of floating-leaved macrophytes in nutrient stocks in an eutrophic macrophyte-dominated lake Aquat. Botany 75(3): 249-260.

  • Marschner H. 1986 Mineral nutrition of higher plants Academic Press London p. 674.

  • Mitchell A. M. Baldwin D. S. 1998 Effects of desiccation/oxidation on the potential for bacterially mediated P release from sediments Limnol. Oceanogr. 43(3): 481-487.

  • Nurminen L. Horppila J. 2009 Life form dependent impacts of macrophyte vegetation on the ratio of resuspended nutrients Water Res. 43(13): 3217-3226.

  • Ostrowska A. Gawliński St. Szczubiałka Z. 1991 Metody analizy i oceny właściwości gleb i roślin (Methods of analysis and evaluation of soil and plant properties) Inst. Ochr. Środ. Warszawa p. 334 (in Polish).

  • Ozimek T. van Donk E. Gulati R.D. 1993 Growth and nutrient uptake by two species of Elodea in experimental conditions and their role in nutrient accumulation in a macrophyte-dominated lake Hydrobiologia 251: 13-18.

  • Perez-Corona M.E. van der Klundert J. Verhoeven J.T.A. 1996 Availability of organic and inorganic phosphorus compounds as phosphorus sources for Carex species New Phytol. 133(2): 225-231.

  • Pieczyńska E. 1993 Detritus and nutrient dynamics in the shore zone of lakes: a review Hydrobiologia 251: 49-58.

  • Shaver G.R. Chapin F.S. III 1995 Long-term responses to factorial NPK fertilizer treatment by Alaskan wet and moist tundra sedge species Ecography 18(3): 259-275.

  • Spence D.H.N. 1982 The zonation of plants in freshwater lakes Adv. Ecol. Res. 12: 37-125.

  • Squires M.M. Lesack F.W. 2003 The relation between sediment nutrient content and macrophyte biomass and community structure along a water transparency gradient among lakes of the Mackenzie Delta Can. J. Fish. Aquat. Sci. 60(3): 333-343.

  • Sundblad K. Wittgren H.B. 1989 Glyceria maxima for wastewater nutrient removal and forage production Biol. Wastes 27: 29-42.

  • Szczepaniak W. 2004 The effect of potassium fertilization on the yielding of cultivated plants J. Elementol. 9(4): 57-66.

  • Tobolski K. 2000 Przewodnik do oznaczania torfów i osadów jeziornych (Guidebook to identification of peat and lake sediments) Wyd. Naukowe PWN Warszawa p. 508 (in Polish).

  • Toet S. Bouwman M. Cevaal A. Verhoeven J.T.A. 2005 Nutrient removal through shoot harvest of Phragmites australis and Typha latifolia in relation to nutrient loading in a wetland used for polishing sewage treatment plant effluent J. Envir. Sci. Health. 40(6-7): 1133-1156.

  • Tuominen L. Kairesalo T. Hartikainen H. Tallberg P. 1996 Nutrient fluxes and microbial activity in sediment enriched with settled seston Hydrobiologia 335(1): 19-31.

  • Van der Brink F.W.B. van der Velde G. Bosman W.W. Coops H. 1995 Effects of substrate parameters on growth responses of eight helophyte species in relation to flooding Aquat. Botany 50(1): 79-97.

  • Van der Putten W.H. Peters B.A.M. Van den Berg M.S. 1997 Effects of litter on substrate conditions and growth of emergent macrophytes New Phytol. 135(3): 527-537.

  • Verhoeven J.T.A. Aerts H.H.M. 1987 Nutrient dynamics in small mesotrophic fens surrounded by cultivated land. II. N and P accumulation in plant biomass in relation to the release of inorganic N and P in the peat soil Oecologia 72(4): 557-561.

  • Verhoeven J.T.A. Bogaards H. Van Logtestijn R.S.P. Spink A. 1998 Initial estimates of nutrient-related processes in floodplains along modified rivers in The Netherlands [in:] Nienhuis P.H. (ed.) New concepts for the sustainable management of river basins Backhuys Leiden: 229-240.

Journal information
Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 159 90 1
PDF Downloads 54 38 0