Comparison of Reduction Systems of Harmful Substances into the Atmosphere in Accordance to Requirements of IMO Tier III

Open access

Abstract

Degradation of the environment is nowadays believed to be the most alarming problem that needs to be solved. Global warming and environmental pollution are predicted to cause a catastrophic chain reaction leading to species extinction, mass emigration due to rising sea levels and global crisis. The only solution suggested by international organizations is the immediate reduction of greenhouse gases and other harmful substances. Marine transportation harmful substances into the atmosphere are recognized to be a significant source of global atmospheric pollution. Despite the high efficiency of marine diesel engines, their impact on the environment is considerable. Due to environmentally friendly policies, modern engines concerns about not only efficiency but also mainly about s aspects. This article analyses and compares marine s exhaust gases reduction methods. Especially the most harmful substances emitted by ships were taken into consideration. The article presents the most crucial law regulations of harmful substances to the atmosphere, pointing at actual and possible future implementations. The most complex methods allowing meeting the latest limits were presented. Pros and cons of available control methods were thoroughly described and methods were compared. The most adequate methods form the effectiveness and economical point of view was pointed out.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Chłopek Z. Szczepański T. Ocena zagrożenia środowiska cząstkami stałymi ze źródeł cywilizacyjnych Inżynieria Ekologiczna Nr 30 pp. 174-193 2012.

  • [2] Czmyr S. Przegląd i porównanie systemów ograniczenia emisji szkodliwych substancji do atmosfery zgodnie z wymogami IMO Tier II Uniwersytet Morski w Gdyni 2019.

  • [3] Czmyr S. Właściwości i możliwości zastosowania gazu Browna Konferencja Kół Naukowych Akademii Morskiej Gdynia 2015.

  • [4] project guide MAN Energy Solutions 2018.

  • [5] Haller P. Jankowski A. Kolanek C. Walkowiak W. Potential Non-Toxic Aqueous Emulsion as a Diesel Fuel Journal of KONES Vol. 22 Issue 3 DOI: 10.5604/12314005.1165969 pp. 43-48 Warsaw 2015.

  • [6] Herdzik J. Consequences of using LNG as a marine fuel Journal of KONES Vol. 20 No. 2 pp. 159-166 2013.

  • [7] Herdzik J. Modyfikacja wskaźników efektywności energetycznej statków różnych typów i konstrukcji Logistyka Nr 6 pp. 706-711 2014.

  • [8] Hirdaris S. E. et al. Considerations on the potential use of Nuclear Small Modular Reactor (SMR) technology for merchant marine propulsion Ocean Engineering Vol. 79 pp. 101-130 2014.

  • [9] http://www.dnvgl.com/maritime/advisory/battery-hybrid-ship-service.html (access 23.05.2019).

  • [10] https://www.wingd.com access 17.05.2019.

  • [11] Jankowski A. Kowalski M. Creating Mechanisms of Toxic Substances of Combustion Journal of KONBiN No. 4(36) DOI 10.1515/jok-2015-0054 pp. 33-42 2015.

  • [12] Kidacki G. Krause P. Rajewski P. Techniczno-eksploatacyjne aspekty redukcji emisji SOx na statkach Zeszyty Naukowe Akademia Morska w Szczecinie pp. 245-258 2006.

  • [13] Kim A. R. Seo Y. J. The reduction of SOx s in the shipping industry: The case of Korean companies Marine Policy Vol. 100 pp. 98-106 2019.

  • [14] Kowalski M. Jankowski A. Research Performance of Novel Design of Diesel Journal of KONES Vol. 24 Issue 4 DOI: 10.5604/01.3001.0010.3157 pp. 99-108 Warsaw 2017.

  • [15] Osipowicz T. Wpływ parametrów regulacyjnych silnika z zapłonem samoczynnym na emisję substancji toksycznych do otoczenia oraz zużycie paliwa Autobusy: technika eksploatacja systemy transportowe Nr 12 pp. 318-323 2011.

  • [16] Raeie N. Emami S. Sadaghiyani O. K. Effects of injection timing before and after top dead center on the propulsion and power in a Diesel Propulsion and Power Research Vol. 3 No. 2 pp. 59-67 2014.

  • [17] Sindhu R. Rao G. A. P. Murthy K. M. Effective reduction of NOx s from diesel using split injections Alexandria Engineering Journal Vol. 57 No. 3 pp. 1379-1392 2018.

  • [18] Skrętowicz M. Jankowski A. Haller P. Woźniak J. Janas M. Risk Evaluation of Driver Exposure to Exhaust Fumes Inside the Passenger Car Cabin in Urban Traffic Conditions Journal of KONES Vol. 23 No. 3 DOI: 10.5604/12314005.1216394 pp. 457-464 Warsaw 2016.

  • [19] Springer G. Ed. Engine Emissions: pollutant formation and measurement Springer Science & Business Media 2012.

  • [20] Stężycki P. Kowalski M. Jankowski A. Researches on the Influence of the Piston Ring Insert on Temperature Distribution in Piston Journal of KONES Vol. 25 Issue 4 DOI: 10.5604/01.3001.0012.7995 pp. 563-570. Warsaw 2018.

  • [21] Stocker T. F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press Cambridge United Kingdom and New York NY USA 2018.

  • [22] Yang Z. L. et al. Selection of techniques for reducing shipping NOx and SOx Transportation Research Part D: Transport and Environment Vol. 17 No. 6 pp. 478-486 2012.

  • [23] Zurek J. Kowalski M. Jankowski A. Modelling of Combustion Process of Liquid Fuels under Turbulent Conditions Journal of KONES Vol. 22 Issue 4 DOI: 10.5604/12314005.1168562 pp. 355-364 Warsaw 2015.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 46 46 13
PDF Downloads 33 33 19