PZL-10 Turboshaft Engine–System Design Review

Open access

Abstract

The PZL – 10-turboshaft gas turbine engine is straight derivative of GTD-10 turboshaft design by OKMB (Omsk Engine Design Bureau). Prototype engine first run take place in 1968. Selected engine is interested platform to modify due gas generator layout 6A+R-2, which is modern. For example axial compressor design from successful Klimov designs TB2-117 (10A-2-2) or TB3-117 (12A-2-2) become obsolete in favour to TB7-117B (5A+R-2-2). In comparison to competitive engines: Klimov TB3-117 (1974 – Mi-14/17/24), General Electric T-700 (1970 – UH60/AH64), Turbomeca Makila (1976 – II225M) the PZL-10 engine design is limited by asymmetric power turbine design layout. This layout is common to early turboshaft design such as Soloview D-25V (Mil-6 power plant). Presented article review base engine configuration (6A+R+2+1). Proposed modifications are divided into different variants in terms of design complexity. Simplest variant is limited to increase turbine inlet temperature (TIT) by safe margin. Advanced configuration replace engine layout to 5A+R+2-2 and increase engine compressor pressure ratio to 9.4:1. Upgraded configuration after modification offers increase of generated power by 28% and SFC reduction by 9% – validated by gas turbine performance model. Design proposal corresponds to a major trend of increasing available power for helicopter engines – Mi-8T to Mi-8MT – 46%, H225M – Makila 1A to 1A2 — 9%), Makila 1A2 to Makila 2-25%.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Lozitskiy L. P. Vetrov A. N. Doroshko S. M. Ivanov V. P. Konyaev Konstruktsiya i prochnost' aviatsionnykh gazoturbinnykh Vozdushnyy Moskva 1992.

  • [2] Zrelov V. A Otechestvennye gazoturbinnye dvigateli Osnovnye parametry i konstruktivnye skhemy Mashinostroenie 2005.

  • [3] Vzlyot Natsional'nyy aerokosmicheskiy zhurnal ISSN 1819-1754 4 pp. 9-29 Moskva 2006.

  • [4] Brophy F. Mah S. Turcotte J. Preliminary Multi-Dysciplinary Optimisation (PMDO) an Example at Engine Level RTO-EN-AVT-167 2009.

  • [5] Dixon S. L. Fluid Mechanics Thermodynamics of Turbomachinery Pergamon Press Ltd. 1998.

  • [6] Panchenko Y. Patel K. Moustapha H. Dowhan M. J. Mah S. Hall D. Preliminary Multi-Dysciplinary Optimisation in Turbomachinery Design Defense Technical Information Center ADP014195 2002.

  • [7] Schobeiri M. Turbomachinery Flow Physics and Dynamic Performance Springer-Verlag Berlin 2005.

  • [8] Shmyrov V. F Tsukanov R. U Ryzhenko A. I. Pehterev V. D Airplane power plant systems designing Kharkov aviation institute 2010.

  • [9] Dżygadło Z. Łyżwiński M. Otyś J. Szczeciński S. Wiatrek R. Zespoły wirnikowe silników turbinowych Wydawnictwa Komunikacji i Łączności Warszawa 1982.

  • [10] Jakubowski R. Modeling and analysis of jet engine with cooling turbine Journal of KONES Powertrain and Transport Vol. 24 No. 1 2017.

  • [11] Stieczkin B. Kazandżan P. Aleksiejew Ł. Goworow A. Konowałow N. Nieczajew J. Fiedorow R. Teoria silników odrzutowych MON 1961.

  • [12] PZL-10W- Instrukcja użytkowania i obsługi technicznej 19.02.208 WSK Rzeszow 1987.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 35 35 2
PDF Downloads 32 32 2