Strength Analysis of the Magnesium Alloy Control System Lever of the ILX-27 Unmanned Helicopter

Open access

Abstract

The article presents the potential use of magnesium alloys in the aerospace industry. In this project the static strength analysis of magnesium alloy AZ31 of the control – system lever of the ILX-27 unmanned helicopter was carried out. Control-system levers are located between the swash plate and an actuator. The aim of the tests was to confirm the strength properties of the magnesium alloy control-system lever for their implementation on the ILX-27 unmanned helicopter. Strain gauge sensor was used during the tests. Strain gauges installation on easily corrodes surface requires special method. The laboratory tests were proceeded by the lever static strength calculations in the computing environment ANSYS Inc. Additionally, a geometry measurement of the control-system lever at CMM equipped with a laser scanner head was made to compare with the lever CAD model to assess the quality and method of conformance. Unmanned helicopter ILX-27 is being developed through the introduction new materials and technologies. Tests of control system lever have shown if it is possible to use lighter materials than aluminum alloy to provide sufficient strength properties while reducing the mass of the object. Analysis of the available materials used in aerospace engineering allowed selecting the best of magnesium alloy.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Dziubińska A. Gontarz A. A new method for producing magnesium alloy twin-rib aircraft brackets Aircraft engineering and Aerospace Technology Vol. 87 No. 2 pp. 180-188 2015.

  • [2] Dziubińska A. Gontarz A. Forming of flat parts with ribs from magnesium alloy Aircraft engineering and Aerospace Technology Vol. 86 No. 4 pp. 356-360 2014.

  • [3] Liu J. Zhao Y. Song L. Xiang Z. Study on the AZ31B magnesium alloy in the application on high-speed trainsAdvanced Engineering Materials II Advanced Materials Research Vol. 535-537 pp. 875-879 2012.

  • [4] Ostrovsky I. Henn Y. Present state and future of magnesium application in aerospace industry International Conference “New Challenges in Aeronautics” Moscow 2007.

  • [5] Bartnicki J. Pater Z. Gontarz A. Tomczak J. Innovative metal forming technologies Journal of Machine Engineering Vol. 14 No. 1 pp. 5-17 2014

  • [6] Hadasik E. Kuc D. Obróbka plastyczna stopów magnezu Obróbka Plastyczna Metali Vol. XXIV No. 2 pp. 131-146 2013.

  • [7] Hadasik E. Kuc D. Szuła A. Kształtowanie plastyczne stopu magnezu AZ31 Rudy i Metale Nieżelazne No. 6 pp. 313-317 2010.

  • [8] Balawender T. Bieniasz Ł. Śliwa R. E. Backward extrusion of AZ31 magnesium alloy sections Hutnik – Wiadomości Hutnicze No. 8 pp. 526-534 2012.

  • [9] Bernaczek J. Śliwa R. E. Budzik G. Kudasik T. Badania modelowe dźwigni układu sterowania śmigłowca Mechanik No. 12 pp. 9-12 2015.

  • [10] Śliwa R. E. Bernaczek J. Budzik G. Kudasik T. Badania modelowe w procesie projektowania i wdrażania do produkcji odkuwek dźwigni układu sterowania śmigłowca Rudy i Metale Nieżelazne No. 11 pp. 619-624 SIGMA-NOT 2015.

  • [11] Guła P. Bezzałogowy śmigłowiec – robot do zadań specjalnych Prace Instytutu Lotnictwa No. 219 pp. 189-193 2011.

  • [12] Guła P. Gorecki T. Projekt badania i wykonanie polskiego bezzałogowego śmigłowca ILX-27 Prace Instytutu Lotnictwa No. 232 pp. 39-49 2013.

  • [13] Mrugała A. Ostachowski P. Łagoda M. Kuc D. Kształtowanie elementów konstrukcyjnych dla lotnictwa ze stopów lekkich metodą wyciskania na zimno w złożonym stanie odkształcenia Prace Naukowe Mechanika Vol. 267 pp. 79-85 2015.

  • [14] Sevvel P. Jaiganesh V. Impact of Tool Profile on Mechanical Properties of AZ31B Mg Alloy during FSW Using Optimized Parameters FME Transactions Vol. 44 No. 1 pp. 43-49 2016.

  • [15] Tomczak J. Pater Z. Bulzak T. Termomechaniczna analiza kształtowania przedkuwki dźwigni ze stopu magnezu AZ31 Archives of Metallurgy and Materials Vol. 57 Iss. 4 pp. 1211-1218 2012.

  • [16] Xu S. Ren G. Jing C. Zhao Z. Sun K. Three-dimensional Numerical Simulation and Experimental study of Severe Plastic Deformation of AZ31 Magnesium Alloy Mechanical and Aerospace Engineering PTS 1-7 Applied Mechanics and Materials Vol. 110-116 pp. 3371-3375 2012

  • [17] Bulzak T. Tomczak J. Pater Z. Analiza numeryczna walcowania wzdłużnego przedkuwki dźwigni ze stopu magnezu AZ31 Rudy i Metale Nieżelazne No. 11 pp. 748-754 2012.

  • [18] Cyganek Z. Tkocz M. The effect of AZ31 alloy flow stress description on the accuracy of forward extrusion FE simulation results Archives of Metallurgy and Materials Iss. 1 pp. 199-204 2012.

  • [19] Feng F. Huang S. Meng Z. Hu J. Lei Y. Zhou M. Wu D. Yang Z. Experimental study on tensile property of AZ31B magnesium alloy at different high strain rates and temperatures Materials & Design Vol. 57 pp. 10-20 2014.

  • [20] Jia Y. Bai Y. Experimental study on the mechanical properties of AZ31B-H24 magnesium alloy sheets under various loading conditions International Journal of Fracture Vol. 197 Iss. 1 pp. 25-48 2016.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 4
PDF Downloads 3 3 1