Characterization of AZ31-NbC surface composite fabricated by friction stir processing

M. Muralimanokar 1 , Vignesh R. Vaira 1 , R. Padmanaban 1  and Priyadharshini G. Suganya 2
  • 1 Department of Mechanical Engineering, Coimbatore, India
  • 2 Department of Mechanical Engineering, Coimbatore, India


AZ31D magnesium alloy is widely used in automotive, aircraft, and aerospace applications because of its high strength to weight ratio. However, the softness of the alloy results in higher wear rate and the high activity results in higher corrosion rate. With an aim of reducing the wear rate and corrosion rate of AZ31 alloy, surface composite of AZ31 alloy is fabricated by reinforcing niobium carbide (NbC) by friction stir processing. The microstructure and dispersion of the reinforcements in AZ31-NbC surface composite is analysed by optical microscopy. In addition, the microhardness and tribological characteristics of the developed AZ31-NbC surface composite are investigated. The results demonstrated an increase in microhardness (23.2 %) and the decrease in wear rate (15.6 % for a normal load of 2 kg) in the developed AZ31-NbC surface composite with respect to the base material. The immersion corrosion test was performed to analyse the corrosion rate of the developed AZ31-NbC surface composite in simulated sea water environment (3.5 wt % NaCl solution). The results indicate that the corrosion rate of the developed AZ31-NbC surface composite is higher than that of base material. A comprehensive analysis on the wear and corrosion mechanism of the developed AZ31-NbC surface composite is presented.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. A. S. Handbook, Magnesium and magnesium alloys, ASM International 1999, pp. 106-118.

  • 2. M. K. Kulekci: Magnesium and its alloys applications in automotive industry, The International Journal of Advanced Manufacturing Technology 2008, 39, 851-865.

  • 3. V. V. Ramalingam, P. Ramasamy, M. D. Kovukkal, G. Myilsamy: Research and development in magnesium alloys for industrial and biomedical applications: a review, Metals and Materials International 2019, 1-22.

  • 4. W. J. Joost, P. E. Krajewski: Towards magnesium alloys for high-volume automotive applications, Scripta Materialia 2017, 128, 107-112.

  • 5. S. Mathaudhu, A. Luo, N. Neelameggham, E. Nyberg, W. Sillekens: Essential readings in magnesium technology, Springer: New York, 2016.

  • 6. D. S. Kumar, C. T. Sasanka, K. Ravindra, K. Suman: Magnesium and its alloys in automotive applications ‒ A review”, Am. J. Mater. Sci. Technol. 2015, 4, 12-30.

  • 7. S. T. Peters: Handbook of Composites, Springer Science and Business Media, 2013.

  • 8. S. Suresh: Fundamentals of metal-matrix composites, Elsevier: Amsterdam, 2013.

  • 9. P. S. Bains, S. S. Sidhu, H. Payal: Fabrication and machining of metal matrix composites: a review, Materials and Manufacturing Processes 2016, 31, 553-573.

  • 10. M. Nováková, O. Chocholatý, A. Kříž: The influence of deformation on the corrosion properties of the material, Koroze a ochrana materialu 2017, 61, 86-90.

  • 11. R. S. Mishra, Z. Ma, I. Charit: Friction stir processing: a novel technique for fabrication of surface composite, Materials Science and Engineering: A 2003, 341, 307-310.

  • 12. Z. Ma: Friction stir processing technology: a review, Metal-lurgical and Materials Transactions A 2008, 39, 642-658.

  • 13. R. S. Mishra, Z. Ma: Friction stir welding and processing, Materials Science and Engineering: R: reports 2005, 50, 1-78.

  • 14. R. S. Mishra, M. W. Mahoney, Y. Sato, Y. Hovanski, R. Verma: Friction stir welding and processing VI: John Wiley and Sons: Hoboken, 2011.

  • 15. R. S. Mishra, P. S. De, N. Kumar: Friction stir welding and processing: science and engineering: Springer: New York, 2014.

  • 16. J.-Y. Kim, J.-W. Hwang, H.-Y. Kim, S.-M. Lee, W.-S. Jung, J.-W. Byeon: Fabrication of AZ31/CNT surface nano-composite by double-pass friction stir processing, Archives of Metallurgy and Materials 2017, 62, 1039-1042.

  • 17. Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi: MWCNTs/ /AZ31 surface composites fabricated by friction stir processing, Materials Science and Engineering: A 2006, 419, 344-348.

  • 18. M. Jamshidijam, A. Akbari-Fakhrabadi, S. M. Masoudpanah, G. H. Hasani, R. V. Mangalaraja: Wear behavior of multiwalled carbon nanotube/AZ31 composite obtained by friction stir processing, Tribology Transactions 2013, 56, 827-832.

  • 19. A. A. Nia, S. Nourbakhsh: Microstructure and mechanical properties of AZ31/SiC and AZ31/CNT composites produced by friction stir processing, Transactions of the Indian Institute of Metals 2016, 69, 1435-1442.

  • 20. C. Chiu, H.-C. Liu: Mechanical properties and corrosion behavior of WZ73 Mg Alloy/SiCp composite fabricated by stir casting method, Metals 2018, 8, 424.

  • 21. C. Chang, Y. Wang, H. Pei, C. Lee, X. Du, J. Huang: Micro-structure and mechanical properties of nano-ZrO2 and nano-SiO2 particulate reinforced AZ31-Mg based composites fabricated by friction stir processing, Key Engineering Materials 2007, 114-119.

  • 22. V. V. R, P. R, and G. M: Synthesis and Characterization of Magnesium Alloy Surface Composite (AZ91D ‒ SiO2) by Friction Stir Processing for Bioimplants, Silicon 2019, 6, 18.

  • 23. R. V. Vignesh, R. Padmanaban, M. Govindaraju, G. S. Priyadharshini: Mechanical properties and corrosion behaviour of AZ91D-HAP surface composites fabricated by friction stir processing, Materials Research Express 2019, 6, 085401.

  • 24. G. Faraji, P. Asadi: Characterization of AZ91/alumina nano- composite produced by FSP, Materials Science and Engineering: A 2011, 528, 2431-2440.

  • 25. D. Lu, Y. Jiang, R. Zhou: Wear performance of nano-Al2O3 particles and CNTs reinforced magnesium matrix composites by friction stir processing, Wear 2013, 305, 286-290.

  • 26. V. Kondaiah, P. Pavanteja, P. A. Khan, S. A. Kumar, R. Dumpala, B. R. Sunil: Microstructure, hardness and wear behavior of AZ31 Mg alloy – fly ash composites produced by friction stir processing, Materials Today: Proceedings 2017, 4, 6671-6677.

  • 27. M. Balakrishnan, I. Dinaharan, R. Palanivel, R. Sivaprakasam: Synthesize of AZ31/TiC magnesium matrix composites using friction stir processing, Journal of Magnesium and Alloys 2015, 3, 76-78.

  • 28. M. Tang, Z. Feng, X. Wu, W. Wang, G. Li, Z. Yan, et al.: Microarc oxidation coatings containing TiC and NbC on magnesium alloy, Surface Engineering 2019, 1-9.

  • 29. V. Sharma, U. Prakash, B. M. Kumar: Surface composites by friction stir processing: A review, Journal of Materials Processing Technology 2015, 224, 117-134.


Journal + Issues