Corrosion resistance of the biodegradable ZE41 magnesium alloy treated by unconventional fluoride conversion coating

Abstract

Magnesium based alloys are very promising material to be used mainly for biodegradable implants in medical applications. However, due to their very low corrosion resistance in the environment of in vivo is their use limited. Increase of the corrosion resistance of magnesium alloys in vivo can be achieved, for example, by a suitable choice of surface treatment while the biocompatibility must be ensured. Fluoride conversion coatings meet these requirements. Unconventional fluoride conversion coating was prepared on ZE41 magnesium alloy by dipping the magnesium alloy into the Na[BF4] salt melt at 450 °C for 0.5; 2 and 8 h. The morphology and thickness of the prepared fluoride conversion coatings were investigated as well as the corrosion resistance of the treated and untreated ZE41 magnesium alloy specimens. The corrosion resistance of the untreated and treated ZE41 magnesium alloy was investigated using electrochemical impedance spectroscopy in the environment of the simulated body fluids at 37 ± 2 °C. The obtained results showed a positive influence of the fluoride conversion coating on the corrosion resistance of the ZE41 magnesium alloy.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Gholami, M.; Mhaede, M.; Pastorek, F.; Altenberger, I.; Hadzima, B.; Wollmann, M.; Wagner, L.: Corrosion Behavior and Mechanical Properties of Ultrafine-Grained Pure Copper with Potential as a Biomaterial. Advanced Engineering Materials, 2016, 18 (4), 615–623. https://doi.org/10.1002/adem.201500269.

  • 2. Kirkland, N. T.; Birbilis, N.: Magnesium Biomaterials; SpringerBriefs in Materials; Springer International Publishing: Cham, 2014, 148. https://doi.org/10.1007/978-3-319-02123-2.

  • 3. Duygulu, O.; Kaya, R. A.; Oktay, G.; Kaya, A. A. Investigation on the Potential of Magnesium Alloy AZ31 as a Bone Implant. Materials Science Forum, 2007, 546–549, 421–424. https://doi.org/10.4028/www.scientific.net/MSF.546-549.421.

  • 4. Ren, Y.; Huang, J.; Zhang, B.; Yang, K.: Preliminary Study of Biodegradation of AZ31B Magnesium Alloy. Frontiers of Materials Science in China, 2007, 1 (4), 401–404. https://doi.org/10.1007/s11706-007-0073-2.

  • 5. Hiromoto, S.; Inoue, M.; Taguchi, T.; Yamane, M.; Ohtsu, N.: In vitro and in vivo Biocompatibility and Corrosion Behaviour of a Bioabsorbable Magnesium Alloy Coated with Octacalcium Phosphate and Hydroxyapatite. Acta Biomaterialia, 2015, 11, 520–530. https://doi.org/10.1016/J.ACTBIO.2014.09.026.

  • 6. Yu, W.; Zhao, H.; Ding, Z.; Zhang, Z.; Sun, B.; Shen, J.; Chen, S.; Zhang, B.; Yang, K.; Liu, M.; et al.: In vitro and in vivo Evaluation of MgF2 Coated AZ31 Magnesium Alloy Porous Scaffolds for Bone Regeneration. Colloids and Surfaces B: Biointerfaces, 2017, 149, 330–340. https://doi.org/10.1016/J.COLSURFB.2016.10.037.

  • 7. Li, H.; Zheng, Y.; Qin, L.: Progress of Biodegradable Metals. Progress in Natural Science: Materials International, 2014, 24 (5), 414–422. https://doi.org/10.1016/J.PNSC.2014.08.014.

  • 8. Radha, R.; Sreekanth, D.: Insight of Magnesium Alloys and Composites for Orthopedic Implant Applications – a Review. Journal of Magnesium and Alloys. National Engg. Reaserch Center for Magnesium Alloys September 1, 2017, 286–312. https://doi.org/10.1016/j.jma.2017.08.003.

  • 9. Fischerauer, S. F.; Kraus, T.; Wu, X.; Tangl, S.; Sorantin, E.; Hänzi, A. C.; Löffler, J. F.; Uggowitzer, P. J.; Weinberg, A. M.: In Vivo Degradation Performance of Micro-Arc-Oxidized Magnesium Implants: A Micro-CT Study in Rats. Acta Biomaterialia, 2013, 9 (2), 5411–5420. https://doi.org/10.1016/j.actbio.2012.09.017.

  • 10. Minárik, P.; Král, R.; Hadzima, B.: Substantially Higher Corrosion Resistance in AE42 Magnesium Alloy through Corrosion Layer Stabilization by ECAP Treatment. Acta Physica Polonica A, 2012, 122 (3), 614–617. https://doi.org/10.12693/APhysPolA.122.614.

  • 11. Gholami-Kermanshahi, M.; Neubert, V.-D.; Tavakoli, M.; Pastorek, F.; Smola, B.; Neubert, V.: Effect of ECAP Processing on Corrosion Behavior and Mechanical Properties of the ZFW MP Magnesium Alloy as a Biodegradable Implant Material. Advanced Engineering Materials, 2018, 20 (10), 1800121. https://doi.org/10.1002/adem.201800121.

  • 12. Mhaede, M.; Pastorek, F.; Hadzima, B.: Influence of Shot Peening on Corrosion Properties of Biocompatible Magnesium Alloy AZ31 Coated by Dicalcium Phosphate Dihydrate (DCPD). Materials Science and Engineering: C, 2014, 39, 330–335. https://doi.org/10.1016/J.MSEC.2014. 03.023.

  • 13. Kajánek, D.; Hadzima, B.; Pastorek, F.; Neslušan Jacková, M.: Corrosion Performance of AZ31 Magnesium Alloy Treated by Ultrasonic Impact Peening (UIP). Materials Today: Proceedings, 2018, 5 (13), 26687–26692. https://doi.org/10.1016/J.MATPR.2018.08.136.

  • 14. Gu, X.; Zheng, Y.; Cheng, Y.; Zhong, S.; Xi, T.: In Vitro Corrosion and Biocompatibility of Binary Magnesium Alloys. Biomaterials, 2009, 30 (4), 484–498. https://doi.org/10.1016/J.BIOMATERIALS.2008.10.021.

  • 15. Eddy Jai Poinern, G.; Brundavanam, S.; Fawcett, D.: Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Bio-degradable Orthopaedic Implant. American Journal of Biomedical Engineering, 2013, 2 (6), 218–240. https://doi.org/10.5923/j.ajbe.20120206.02.

  • 16. Li, J.; Huang, J.; Tian, Y.; Liu, C.: Corrosion Action and Passivation Mechanism of Magnesium Alloy in Fluoride Solution. Transactions of Nonferrous Metals Society of China, 2009, 19 (1), 50–54. https://doi.org/10.1016/S1003-6326(08)60227-7.

  • 17. Mao, L.; Yuan, G.; Niu, J.; Zong, Y.; Ding, W.: In Vitro Degradation Behavior and Biocompatibility of Mg–Nd– Zn–Zr Alloy by Hydrofluoric Acid Treatment. Materials Science and Engineering: C, 2013, 33 (1), 242–250. https://doi.org/10.1016/j.msec.2012.08.036.

  • 18. Yan, T.; Tan, L.; Xiong, D.; Liu, X.; Zhang, B.; Yang, K.: Fluoride Treatment and in Vitro Corrosion Behavior of an AZ31B Magnesium Alloy. Materials Science and Engineering: C, 2010, 30 (5), 740–748. https://doi.org/10.1016/j.msec.2010.03.007.

  • 19. Ohse, T.; Tsubakino, H.; Yamamoto, A.: Surface Modification on Magnesium Alloys by Coating with Magnesium Fluorides. Materials Science Forum, 2005, 475–479, 505–508. https://doi.org/10.4028/www.scientific.net/MSF.475-479.505.

  • 20. Yamamoto, A.; Terawaki, T.; Tsubakino, H.: Microstructures and Corrosion Properties on Fluoride Treated Magnesium Alloy. Materials Transactions, 2008, 49 (5), 1042–104. https://doi.org/10.2320/matertrans.MC200704.

  • 21. Fintová, S.; Drábiková, J.; Pastorek, F.; Tkacz, J.; Kuběna, I.; Trško, L.; Hadzima, B.; Minda, J.; Doležal, P.; Wasserbauer, J.; et al.: Improvement of Electrochemical Corrosion Characteristics of AZ61 Magnesium Alloy with Unconventional Fluoride Conversion Coatings. Surface and Coatings Technology, 2019, 357(15), 638–650. https://doi.org/10.1016/j.surfcoat.2018.10.038.

  • 22. Chun-Yan, Z.; Rong-Chang, Z.; Cheng-Long, L.; Jia-Cheng, G.: Comparison of Calcium Phosphate Coatings on Mg–Al and Mg–Ca Alloys and Their Corrosion Behavior in Hank’s Solution. Surface and Coatings Technology, 2010, 204 (21–22), 3636–3640. https://doi.org/10.1016/J.SURFCOAT.2010.04.038.

  • 23. Yang, J. X.; Cui, F. Z.; Yin, Q. S.; Zhang, Y.; Zhang, T.; Wang, X. M.: Characterization and Degradation Study of Calcium Phosphate Coating on Magnesium Alloy Bone Implant In Vitro. IEEE Transactions on Plasma Science, 2009, 37 (7), 1161–1168. https://doi.org/10.1109/TPS.2009.2016664.

  • 24. Kajánek, D.; Hadzima, B.; Pastorek, F.; Neslušan Jacková, M.: Electrochemical Impedance Spectroscopy Characterization of ZW3 Magnesium Alloy Coated by DCPD Using LASV Deposition Technique. Acta Metallurgica Slovaca, 2017, 23 (2), 147–154. https://doi.org/10.12776/ams.v23i2.900.

  • 25. Hadzima, B.; Mhaede, M.; Pastorek, F.: Electrochemical Characteristics of Calcium-Phosphatized AZ31 Magnesium Alloy in 0.9 % NaCl Solution. Journal of Materials Science: Materials in Medicine, 2014, 25 (5), 1227–1237. https://doi.org/10.1007/s10856-014-5161-0.

  • 26. Pastorek, F.; Hadzima, B.; Omasta, M.; Mhaede, M.: Effect of Electrodeposition Temperature on Corrosion Resistance of Calcium Phosphate. Acta Metallurgica Slovaca, 2014, 20 (2), 200–208. https://doi.org/10.12776/ams.v20i2.290.

  • 27. Djokić, S. S.: Biomedical Applications, 1st ed.; Springer: US, 211, 2012.

  • 28. Chiu, K. Y.; Wong, M. H.; Cheng, F. T.; Man, H. C.: Characterization and Corrosion Studies of Fluoride Conversion Coating on Degradable Mg Implants. Surface and Coatings Technology, 2007, 202 (3), 590–598. https://doi.org/10.1016/j.surfcoat.2007.06.035.

  • 29. Drábiková, J.; Fintová, S.; Tkacz, J.; Doležal, P.; Wasserbauer, J.: Unconventional Fluoride Conversion Coating Preparation and Characterization. Anti-Corrosion Methods and Materials, 2017, 64 (6), 613-619. https://doi.org/10.1108/ACMM-02-2017-1757.

  • 30. Drábiková, J.; Pastorek, F.; Fintová, S.; Doležal, P.; Wasserbauer, J.: Zvýšenie koróznej odolnosti biokompatibilnej horčíkovej zliatiny AZ61 pomocou fluoridového konverzného povlaku. 2016, 60 (5), 132–138. https://doi.org/10.1515/kom-2016-0021.

  • 31. Flaten, T. P.: Aluminium as a Risk Factor in Alzheimer’s Disease, with Emphasis on Drinking Water. Brain Research Bulletin, 2001, 55 (2), 187–196. https://doi.org/10.1016/S0361-9230(01)00459-2.

  • 32. ASTM B80 – 15 Standard Specification for Magnesium-Alloy Sand Castings, 2015.

  • 33. Cell Culture Media and Reagents Product Selection Guide European Edition www.corning.com/lifesciences. (accessed Jul 9, 2018).

  • 34. Song, Y.; Shan, D.; Chen, R.; Han, E.-H.: Corrosion Characterization of Mg–8Li Alloy in NaCl Solution. Corrosion Science, 2009, 51 (5), 1087–1094. https://doi.org/10.1016/j.corsci.2009.03.011.

  • 35. Kuchariková, L.; Liptáková, T.; Tillová, E.; Kajánek, D.; Schmidová, E.: Role of Chemical Composition in Corrosion of Aluminum Alloys. Metals, 2018, 8 (8), 581. https://doi.org/10.3390/met8080581.

  • 36. Sudarshana, S.; Jagannath, N.; A. Nityananda, S.: Influence of Sulfate Ion Concentration and PH on the Corrosion of Mg–Al–Zn–Mn (GA9) Magnesium Alloy. Journal of Magnesium and Alloys, 2015, 3 (3), 258–270. https://doi.org/10.1016/J.JMA.2015.07.004.

  • 37. Li, C. Q.; Xu, D. K.; Chen, X.-B.; Wang, B. J.; Wu, R. Z.; Han, E. H.; Birbilis, N.: Composition and Microstructure Dependent Corrosion Behaviour of Mg-Li Alloys. Electrochimica Acta, 2018, 260, 55–64. https://doi.org/10.1016/J.ELECTACTA.2017.11.091.

  • 38. King, A. D.; Birbilis, N.; Scully, J. R.: Accurate Electro-chemical Measurement of Magnesium Corrosion Rates; a Combined Impedance, Mass-Loss and Hydrogen Collection Study. Electrochimica Acta, 2014, 121, 394–406. https://doi.org/10.1016/J.ELECTACTA.2013.12.124.

  • 39. Fintová, S.; Drábiková, J.; Pastorek, F.; Tkacz, J.; Kuběna, I.; Trško, L.; Hadzima, B.; Minda, J.; Doležal, P.; Wasserbauer, J.; et al.: Improvement of Electrochemical Corrosion Characteristics of AZ61 Magnesium Alloy with Unconventional Fluoride Conversion Coatings. Surface and Coatings Technology, 2019, 357, 638–650. https://doi.org/10.1016/J.SURFCOAT.2018.10.038.

  • 40. Feng, X.; Shi, L.-Y.; Hang, J.-Z.; Zhang, J.-P.; Fang, J.-H.; Zhong, Q.-D.: Low Temperature Synthesis of Boron Phosphide Nanocrystals. Materials Letters, 2005, 59 (8–9), 865–867. https://doi.org/10.1016/j.matlet.2004.10.067.

  • 41. Drábiková, J.; Fintová, S.; Doležal, P.; Wasserbauer, J.; Ptáček, P.: Characterization of Unconventional Fluoride Conversion Coating Prepared on AZ31 Magnesium Alloy; Materials Engineering - Materiálové inžinierstvo (MEMI), 2018; 24, 72-87.

  • 42. Drábiková, J.; Pastorek, F.; Fintová, S.; Dolezal, P.; Wasserbauer, J.: Improvement of Bio-Compatible AZ61 Magnesium Alloy Corrosion Resistance by Fluoride Conversion Coating. Koroze a Ochrana Materialu, 2016, 60 (5), 132-137. https://doi.org/10.1515/kom-2016-0021.

  • 43. Jin, S.; Amira, S.; Ghali, E.: Electrochemical Impedance Spectroscopy Evaluation of the Corrosion Behavior of Die Cast and Thixocast AXJ530 Magnesium Alloy in Chloride Solution. Advanced Engineering Materials, 2007, 9 (1–2), 75–83. https://doi.org/10.1002/adem.200600199.

  • 44. Chen, J.; Wang, J.; Han, E.; Dong, J.; Ke, W.: AC Impedance Spectroscopy Study of the Corrosion Behavior of an AZ91 Magnesium Alloy in 0.1 M Sodium Sulfate Solution. Electrochimica Acta, 2007, 52 (9), 3299–3309. https://doi.org/10.1016/J.ELECTACTA.2006.10.007.

OPEN ACCESS

Journal + Issues

Search