Effect of heat treatment on microstructure, microhardness and corrosion resistance of ZE41 Mg alloy

Open access


Magnesium and its alloys are now attracting a great attention as promising materials for several light weight engineering applications. ZE41 is a new Mg alloy contains Zinc, Zirconium and Rare Earth elements as the important alloying elements and is widely used in aerospace applications. In the present study, heat treatment has been carried out at two different temperatures (300 and 335 °C) to assess the effect of heat treatment on microstructure and corrosion behavior of ZE41 Mg alloy. The grain size was observed as almost similar for the unprocessed and heat treated samples. Decreased amount of secondary phase (MgZn2) was observed after heat treating at 300 °C and increased intermetallic phase (Mg7Zn3) and higher number of twins appeared for the samples heat treated at 335 °C. Microhardness measurements showed increased hardness after heat treating at 300 °C and decreased hardness after heat treating at 335 °C which can be attributed to the presence of higher supersaturated grains after heat treating at 300 °C. The samples heat treated at 335 °C exhibited better corrosion resistance compared to those of base materials and samples heat treated at 300 °C. From the results, it can be understood that the selection of heat treatment temperature is crucial that depends on the requirement i.e. to improve the microhardness or at the loss of microhardness to improve the corrosion resistance of ZE41 Mg alloy.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Fridrich H. E. and Mordike B. L. Magnesium Technology Springer Germany 2006.

  • 2. Mordike B. L. and Ebert T. Magnesium properties – applications – potential Materials Science and Engineering A 2001 302 37–45.

  • 3. Meyers M. A.; Mishra A.; Benson D. J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2006 51 427–556.

  • 4. Polmear I. Light Alloys: From Traditional Alloys to Nano-crystals USA Elsevier 2006.

  • 5. Avedesian M.; Baker H. ASM Specialty Handbook: Magnesium and Magnesium Alloys ASM International USA 1999.

  • 6. Surya Kiran G. V. V.; Hari Krishna K.; Sameer SK.; Bhargavi M.; Santosh Kumar B; Mohana Rao G; Naidubabu Y.; Ravikumar Dumpala Ratna Sunil B.;Machining characteristics of fine grained AZ91 Mg alloy processed by friction stir processing Trans. Nonferrous Met. Soc. China 2017 27 804−811.

  • 7. Venkataiah M.; Anup Kumar T.; Venkata Rao K.; Anand Kumar S.; Siva I.; Ratna Sunil B.; Effect of grain refinement on corrosion rate mechanical and machining behavior of friction stir processed ZE41 Mg alloy Transactions of Indian Institute of Metals 2018 (in press).

  • 8. Totten G.E. ASM Handbook Volume 4E: Heat Treating of Nonferrous Alloys ASM International USA 2016.

  • 9. Swetha Chowdary V.; Ravikumar Dumpala Anand Kumar S.; Kondaiah V. V.; Ratna Sunil B. Influence of heat treatment on the machinability and corrosion behavior of AZ91 Mg alloy Journal of Magnesium and Alloys 2018 52–58.

  • 10. Zhao D.; Wang Z.; Zuo M.; Geng H. Effects of heat treatment on microstructure and mechanical properties of extruded AZ80 magnesium alloy Materials and Design 2014 56 589-593.

  • 11. Liu C.; Zhu X.; Zhou H. Phase Diagrams for Magnesium Alloys Central South University Press: Changsha 2006 35 63.

  • 12. Clark J. B.; Zabdyr L.; Moser in Z.; Massalski T. B.; Okamoto H.; Subramanian P. R.; Kacprzak L.; (Eds.) Binary Alloy Phase Diagrams second ed. ASM International Materials Park Ohio 1990 pp. 2571–2572.

  • 13. Predel (Ed.) B.; Phase Equilibria Crystallographic and Thermodynamic Data of Binary Alloys Landolt-Born-stein Group IV Physical Chemistry 5 Springer- Verlag Berlin Germany 1998.

  • 14. N. Saikrishna G. Pradeep Kumar Reddy Balakrishnan Munirathinam Ratna Sunil B.; Influence of bimodal grain size distribution on the corrosion behavior of friction stir processed biodegradable AZ31 magnesium alloy Journal of Magnesium and Alloys 2016 4 (1) 68–76.

  • 15. ASTM Standard E112-12. Standard test methods for determining average grain size. West Conshohocken PA: ASTM International 2012.

  • 16. B. Ratna Sunil T. S. Sampath Kumar Uday Chakkingal V. Nandakumar Mukesh Doble Nano-hydroxyapatite reinforced AZ31 magnesium alloy by friction stir processing: a solid state processing for biodegradable metal matrix composites Journal of Materials Science: Materials in Medicine 2014 25 975–988.

  • 17. Mansfeld F.; The polarization resistance technique for measuring corrosion currents. In: Advances in Corrosion Science and Engineering Vol 6 Plenum Press New York 1970.

  • 18. Neil W.C.; Forsyth M.; Howlett P.C.; Hutchinson C.R. and Hinton B.R.W. Corrosion of magnesium alloy ZE41 – The role of microstructural features Corrosion Science 2009 51 387–394.

  • 19. Song K.; Pan F.; Chen X.; Tang A.; Pan H. and Luo S. Effect of Zn content on electromagnetic interference shielding effectiveness of Mg–Zn alloys Materials Research Innovations 2014 18 S4-193-197.

  • 20. Li L.; Jiang W.; Guo P.; Yu W.; Wang F.; Pan Z. Microstructure Evolution of the Mg-5.8 Zn-0.5 Zr-1.0 Yb Alloy During Homogenization Materials Research 2017 20 (4) 1063-1071.

  • 21. Kevorkov D.; Pekguleryuz M.; Experimental study of the Ce–Mg–Zn phase diagram at 350 °C via diffusion couple techniques Journal of Alloys and Compounds 2009 478 427–436.

  • 22. Neil W.C.; Forsyth M.; Howlett P.C.; Hutchinson C.R.; Hinton B.R.W. Corrosion of heat treated magnesium alloy ZE41 Corrosion Science 2011 53 3299–3308.

Journal information
Impact Factor

CiteScore 2018: 0.25

SCImago Journal Rank (SJR) 2018: 0.164
Source Normalized Impact per Paper (SNIP) 2018: 0.286

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 146 146 36
PDF Downloads 171 171 36