Corrosion behaviour of the titanium beta alloy nanotubular surface in the presence of fluoride ions

Open access

Abstract

The titanium bioactivity could be increased by surface nanostructuring. Titanium alloys are using for dental implants manufacturing. It represents a specific problem because of using of the dental treatments with high concentration of fluoride ions and with acidic pH. The corrosion resistance of nanostructured surface of titanium beta alloy in environments with fluoride ions was examined by common electrochemical technique. The electrochemical impedance measurement showed high corrosion resistance in physiological solution. The fluoride ions have expected negative influence on corrosion behaviour of the layer. The nanotube bottom was preferentially attacked which resulted in layer undercoroding and its detachment.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Zhang L.; Webster T. J. Nanotechnology and nano-materials: Promises for improved tissue regeneration. Nano Today 2009 4 (1) 66-80.

  • 2. Niinomi M. Recent research and development in titanium alloys for biomedical applications and health-care goods. Science and Technology of Advanced Materials 2003 4 (5) 445-454.

  • 3. Elias C. N. Biomedical Applications of Titanium and its Alloys. Biological Materials Science 2008.

  • 4. Guillemot F. Recent advances in the design of titanium alloys for orthopedic applications. Expert Review of Medical Devices 2005 2 (6) 741-748.

  • 5. Bahraminasab M. et al. Aseptic loosening of femoral components – Materials engineering and design considerations. Materials & Design 2013 44 155-163.

  • 6. Bahraminasab M. et al. Aseptic loosening of femoral components – A review of current and future trends in materials used. Materials & Design 2012 42 459-470.

  • 7. Okulov I. V. et al. Composition optimization of low modulus and high-strength TiNb-based alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2017 65 866-871.

  • 8. Malek J. et al. The effect of Zr on the microstructure and properties of Ti-35Nb-XZr alloy. Mat. Sci. Eng. a-Struct. 2016 675 1-10.

  • 9. Eisenbarth E. et al. Biocompatibility of beta -stabilizing elements of titanium alloys. Biomaterials 2004 25 (26) 5705-5713.

  • 10. Cao W.; Hench L. L. Bioactive materials. Ceramics International 1996 22 (6) 493-507.

  • 11. Oh S.; Jin S. Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Materials Science & Engineering C: Biomimetic and Supramolecular Systems 2006 26 (8) 1301-1306.

  • 12. Oh S.-H. et al. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 2005 26 (24) 4938-4943.

  • 13. Ghicov A.; Schmuki P. Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem Commun 2009 (20) 2791-2808.

  • 14. Regonini D. et al. A review of growth mechanism structure and crystallinity of anodized TiO2 nanotubes. Mat. Sci. Eng. R. 2013 74 (12) 377-406.

  • 15. Tsuchiya H. et al. Nanotube oxide coating on Ti-29Nb-13Ta-4.6Zr alloy prepared by self-organizing anodization. Electrochimica Acta 2006 52 (1) 94-101.

  • 16. Jang S.-H. et al. Electrochemical characteristics of nano-tubes formed on Ti-Nb alloys. Thin Solid Films 2009 517 (17) 5038-5043.

  • 17. Kim J.-U. et al. Morphology of hydroxyapatite coated nanotube surface of Ti–35Nb–xHf alloys for implant materials. Thin Solid Films 2011 520 (2) 793-799.

  • 18. Campanelli L. C. et al. Effect of an amorphous titania nanotubes coating on the fatigue and corrosion behaviors of the biomedical Ti-6Al-4V and Ti-6Al-7Nb alloys. J. Mech. Behav. Biomed. Mater. 2017 65 542-551.

  • 19. Grotberg J. et al. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V. Materials science & engineering. C Materials for biological applications 2016 59 677-89.

  • 20. Rafieerad A. R. et al. Toward improved mechanical tribological corrosion and in-vitro bioactivity properties of mixed oxide nanotubes on Ti–6Al–7Nb implant using multi-objective PSO. Journal of the Mechanical Behavior of Biomedical Materials 2017 69 1-18.

  • 21. Hilario F. et al. Influence of morphology and crystalline structure of TiO2 nanotubes on their electrochemical properties and apatite-forming ability. Electrochimica Acta 2017 245 337-349.

  • 22. Yu W.-q. et al. In vitro corrosion study of different TiO2 nanotube layers on titanium in solution with serum proteins. Colloids and Surfaces B: Biointerfaces 2011 84 (2) 400-405.

  • 23. Jang S.-H. et al. Electrochemical characteristics of nano-tubes formed on Ti–Nb alloys. Thin Solid Films 2009 517 (17) 5038-5043.

  • 24. Kim W.-G.; Choe H.-C. Nanostructure and corrosion be- haviors of nanotube formed Ti-Zr alloy. Transactions of Non- ferrous Metals Society of China 2009 19 (4) 1005-1008.

  • 25. Fojt J. et al. Electrochemical behaviour of the nanostructured surface of Ti-35Nb-2Zr alloy for biomedical applications. Materials and Corrosion 2016 67 (9) 915-920.

  • 26. Fovet Y. et al. Influence of pH and fluoride concentration on titanium passivating layer: stability of titanium dioxide. Talanta 2001 53 (5) 1053-1063.

  • 27. Nakagawa M. et al. Effect of fluoride concentration and pH on corrosion behavior of titanium for dental use. Journal of dental research 1999 78 (9) 1568-1572.

  • 28. Reclaru L.; Meyer J. M. Effects of fluorides on titanium and other dental alloys in dentistry. Biomaterials 1998 19 (1-3) 85-92.

  • 29. Robin A.; Meirelis J. P. Influence of fluoride concentration and pH on corrosion behavior of Ti-6Al-4V and Ti-23Ta alloys in artificial saliva. Materials and Corrosion 2007 58 (3) 173-180.

  • 30. Fojt J. et al. On the increasing of adhesive strength of nanotube layers on beta titanium alloys for medical applications. Applied Surface Science 2015 355 52-58.

  • 31. Kar A. et al. Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surface and Coatings Technology 2006 201 (6) 3723-3731.

  • 32. Huang H.-H.; Lee T.-H. Electrochemical impedance spectroscopy study of Ti-6Al-4V alloy in artificial saliva with fluoride and/or bovine albumin. Dental Materials 2005 21 (8) 749-755.

  • 33. Joska L.; Fojt J. Corrosion behaviour of titanium after short-term exposure to an acidic environment containing fluoride ions. Journal of Materials Science: Materials in Medicine 2010 21 8.

  • 34. Duarte L. T. et al. Surface characterization of oxides grown on the Ti–13Nb–13Zr alloy and their corrosion protection. Corrosion Science 2013 72 35-40.

  • 35. Calderon Moreno J. M. et al. Surface and electrochemical characterization of a new ternary titanium based alloy behaviour in electrolytes of varying pH. Corrosion Science 2013 77 52-63.

  • 36. Vasilescu C. et al. Surface analysis and corrosion resistance of a new titanium base alloy in simulated body fluids. Corrosion Science 2012 65 431-440.

  • 37. Barsoukov E.; MacDonald R. Impedance Spectroscopy: Theory Experiment and Applications 2nd Edition. 2005; p 608 pp.

  • 38. Bojinov M. et al. Evidence of coupling between film growth and metal dissolution in passivation processes. Electrochimica Acta 2003 48 (28) 4107-4117.

  • 39. Ibris N.; Mirza Rosca J. C. EIS study of Ti and its alloys in biological media. Journal of Electroanalytical Chemistry 2002 526 (1-2) 53-62.

  • 40. Bojinov M. The ability of a surface charge approach to describe barrier film growth on tungsten in acidic solutions. Electrochimica Acta 1997 42 (23–24) 3489-3498.

  • 41. Córdoba-Torres P. et al. Electrochemical impedance analysis of TiO2 nanotube porous layers based on an alter- native representation of impedance data. Journal of Electroanalytical Chemistry 2015 737 54-64.

  • 42. Mohan L. et al. Electrochemical behaviour and bioactivity of self-organized TiO2 nanotube arrays on Ti-6Al-4V in Hanks’ solution for biomedical applications. Electro-chimica Acta 2015 155 411-420.

  • 43. Mohan L. et al. Electrochemical behavior and effect of heat treatment on morphology crystalline structure of self-organized TiO2 nanotube arrays on Ti-6Al-7Nb for biomedical applications. Materials science & engineering. C Materials for biological applications 2015 50 394-401.

  • 44. Fojt J. Ti–6Al–4V alloy surface modification for medical applications. Applied Surface Science 2012 262 163-167.

  • 45. Munirathinam B. et al. Influence of crystallite size and surface morphology on electrochemical properties of annealed TiO2 nanotubes. Applied Surface Science 2015 355 1245-1253.

Search
Journal information
Impact Factor


CiteScore 2018: 0.25

SCImago Journal Rank (SJR) 2018: 0.164
Source Normalized Impact per Paper (SNIP) 2018: 0.286

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 81 81 10
PDF Downloads 69 69 6