Inhibition efficiency of sodium salts of carboxylic acids on corrosion of lead in archive environment

Open access

Abstract

Lead in archive environment suffers from severe corrosion attack caused by the organic acids’ vapours usually presented in such an environment. One of possible ways of corrosion protection of lead is its surface treatment by solutions of sodium salts of monocarboxylic acids (general formula CH3(CH2)n-2COONa, noted NaCn, n = 10, 11, 12). The principle of this corrosion protection is a creation of conversion coating on the lead’s surface, which decreases corrosion rate of lead in the atmospheric environment polluted by organic acids’ vapour. Our research aims at the selection of a suitable protection system that would be applicable to conservation of historical lead in archives and museums. This paper evaluates the corrosion behaviour of treated lead based on the values of polarisation resistance and shape of potentiodynamic curves in simulated corrosive environment (0.01 mol l−1 solution of acetic acid). The lead samples with different state of surface (pure, corroded and electrochemically cleaned) were treated with sodium salts of monocarboxylic acids NaCn (n = 10, 11, 12) having concentration of 0.01 and 0.05 mol l−1. In simulated corrosive atmosphere (above 0.001 mol l−1 acetic acid solution vapours), corrosion rate was measured by means of electrical resistance technique. The inhibition efficiency of monocarboxylic acids is dependent on their carbon chain length and their concentration. The greatest inhibiting efficiency in corrosive atmospheres and for all lead samples was observed for the sodium salt of dodecanoic acid having concentration of 0.05 mol l−1. Artificially created corrosion products and salt coatings were analysed by X-ray diffraction analysis and their surface morphology was observed by scanning electron microscopy. A protective salt coatings are mainly composed of metallic soaps in dimer form.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Schotte B. A study of electrolytic reduction of corroded lead objects and application characterization and testing of a protective lead carboxylate coating. Disertační práce Universiteit Gent: Faculty of Science 2007.

  • 2. Selwyn L.; et al. Lead (Pb). In Metals and Corrosion: A Handbook for the Conservation Professional. 1st ed.; Canadian Conservation Institute: Canada 2004; pp 115–123. ISBN 0-662-37984-5.

  • 3. Kolektiv autorů. Konzervování a restaurování olova a jeho slitin. In Konzervování a restaurování kovů. 1st ed.; Technické muzeum v Brně: Brno 2011; pp 526-544. ISBN 978-80-86413-70-9

  • 4. Costa V. Electrochemistry as a conservation tool: an overview. Conservation Science 2003 88-95.

  • 5. Jareš V. Metalografie neželezných kovů. 1st ed.; Nakladatelství ČSAV: Praha 1950.

  • 6. Vojtěch D. Olovo a jeho slitiny. In Materiály a jejich mezní stavy. 1st ed.; VŠCHT: Praha 2010; pp 35–36. ISBN 978-80-7080-741-5.

  • 7. Kratochvíl B.; Švorčík V.; Vojtěch D. Slitiny neželezných kovů. In Úvod do studia materiálů. 1st ed.; VŠCHT: Praha 2005; pp 164–165. ISBN 80-7080-568-4.

  • 8. CostaV.; Urban F. Lead and its alloys: metallurgy deterioration and conservation. Reviews in Conservation 2005 6 48–62.

  • 9. Schotte B.; Adriens A. The treatment of corroded lead artefacts. Studies in Conservation 2006 51 1–8.

  • 10. Lyon S. B. Corrosion of Lead and its Alloys. Corrosion and Protection Center. University of Manchester: Manchester 2010.

  • 11. Leygraf C.; Graedel T. E. Atmospheric Corrosion of Lead. In Atmospheric Corrosion 1st ed.; Canada 2000; pp 295–304. ISBN 0-471-37219-6.

  • 12. Niklasson A.; Johansson L.; Svensson J. The influence of relative humidity and temperature on the acetic acid vapour-induced atmospheric corrosion of lead. Corrosion Science 2008 50 3031–3037.

  • 13. Ryhl-Svendsen M. Corrosivity measurements of indoor museum environments using lead coupons as dosimeters. Journal of Cultural Heritage 2008 9 285–293.

  • 14. Angeliny E.; Grassini S.: Underwater corrosion of metallic heritage artefacts. In Corrosion and conservation of cultural heritage metallic artefacts 1st ed.; Woodhead Publishing Limited: Oxford 2013; pp 236–259.

  • 15. Grayburn R.; et al. Time-lapse synchrotron X-ray diffraction to monitor conservation coatings for heritage lead in atmospheres polluted with oak-emitted volatile organic compounds. Corrosion Science 2014 82 280–289.

  • 16. Sastri V. S. Vapor phase corrosion inhibitors. In Corrosion Inhibitors Principles and Aplications 1st ed.; John Wiley and Sons Ltd: Chichester 1998 pp 787–822.

  • 17. Guidelines for the Storage and Display of Archaeological Metalwork [Online]. Engish heritage 2013 pp 12-13. http://www.english-heritage.org.uk/content/learn/conservation/2543455/2543024/guidelines-for-the-storage-and-display-of-archaeological-metalwork.pdf (accessed 11 Jan 2019)

  • 18. Ďurovič M.; et al. Restaurování a konzervování archiválií a knih 1st ed.; Paseka: Praha 2002. ISBN 80-7185-383-6.

  • 19. Vávrová P. Koroze a degradace papíru. Koroze a degradace materiálu. http://www.vscht.cz/met/stranky/vyuka/predmety/koroze_materialu_pro_restauratory/kadm/pdf/1_3.pdf (accessed 11 Jan 2019).

  • 20. Proniewicz L. M.; Paluszkiewicz C.; Weselucha-Birczynska A.; Baranski A.; Dutka D. FT-IR and FT-Raman study of hydrothermally degraded groundwood containing paper. Journal of Molecular Structure 2002 614 345–353.

  • 21. Ďurovič M. Vlastnosti papíru a jeho degradace. http://www.vscht.cz/met/stranky/vyuka/labcv/labor/res_vlastnosti_papiru/teorie.htm (accessed 11 Jan 2019).

  • 22. Hatchfield B. P. Pollutants in the Museum Environment; Archetype Publications: London 2002. ISBN 1-873132-96-4.

  • 23. Gibson L. T.; Watt C. M. Acetic and formic acids emitted from wood samples and their effect on selected materials in museum environments. Corrosion Science 2010 52 172–178.

  • 24. Coles E. L.; Gibson J. G.; Hinde R. M.: The corrosion of lead by dilute aqueous organic acids Journal of Applied Chemistry 1958 341-348.

  • 25. Schotte B.; Adriens A. The treatment of corroded lead artefacts. Studies in Conservation 2006 51 1–8.

  • 26. Turgoose S. The corrosion of lead and tin: before and after excavation. In Lead and Tin Studies in Conservation and Technology United Kingdom Institute for Conservation: London 1985 pp 15–23.

  • 27. Niklasson A.; Johansson L.; Svensson J. Atmospheric corrosion of historical organ pipes´influence of acetic and formic acid vapour and water leaching on lead. Proceedings of Metal 2004 179–273.

  • 28. Stambolov T. The Corrosion and Conservation of Metallic Antiquities and Works of Arts. Central research laboratory of objects of art and science: Amsterdam 1985 pp 160-173.

  • 29. Nejedlý V. Restaurování sochy Atlanta z astronomické věže pražského Klementina Zprávy památkové péče LVII 1997 2 46-49.

  • 30. Caley E. Coatings and incrustations on lead objects from the agora and the method used for their removal. Studies in Conservation 1955 2 49–54.

  • 31. Organ R. Use of ion-exchange resin in the treatment of lead objects. Museums Journal 1953 53 49–52.

  • 32. Škeřík J. Receptář pro elektrotechnika. 3rd ed. Státní nakladatelství technické literatury: Praha 1982.

  • 33. Fawzy M. A. et al. Corrosion behaviour of Pb-Sn binary alloys in acid solutions. Surface and Coatings Technology 1981 14 257–264.

  • 34. Rocca E. et al. Inhibition treatment of the corrosion of lead artefacts in atmospheric conditions and by acetic acid vapour: use of sodium decanoate. Corrosion Science 2004 46 653-665.

  • 35. Cano E.; Lafuente D. Corrosion inhibitors for the preservation of metallic heritage artefacts. In Corrosion and conservation of cultural heritage metallic artefacts 1st ed.; Woodhead Publishing Limited: Oxford 2013 pp 570–594.

  • 36. Sankarapapavinasam S. et al. Hydrazine and substituted hydrazines as corrosion inhibitors for lead in acetic acid. British Corrosion Journal 1989 24 (1) 39-42.

  • 37. Chiavari C.; Martiny C. Conservation of organ pipes: protective treatments of lead exposed to acetic acid vapours. In Metal 04 Proceedings of the International Conference on Metals Conservation Canberra October 4-8 2004 National Museum of Australia: Canberra 2004 pp 281-293.

  • 38. Rocca E.; Steinmetz J. Inhibition of lead corrosion with saturated linear aliphatic chain monocarboxylates of sodium Corrosion Science 2001 43 891-902.

  • 39. Inhibitory koroze kovů. http://ukmki.vscht.cz/files/uzel/0016736/Inhibitory%20koroze%20kov%C5%AF.pdf ? redirected (accessed 11 Jan 2019)

  • 40. Lacouture F.; Francois M.; Didierjean C.; Rivera J. P.; Rocca E.; Steinmetz J. Anhydrous lead(II) heptanoate. Acta Crystallogr. 2001 57 530–531.

  • 41. Green L. A re-evaluation of lead conservation techniques at the British museum. International Restorer Seminar Veszprém Hungary July 1-10 1989.

  • 42. De Keersmacker M.; De Wael K.; Adriaens A.: Influence of the deposition method temperature and deposition time on the corrosion inhibition of lead dodecanoate coatings deposited on lead surfaces. Journal of Solid State Electrochemistry 2013 17 1259–1270.

  • 43. Pecenová Z.; Kouřil M. Ochrana historického olova proti parám kyseliny octové. Koroze a ochrana materiálu 2016 60(1) 28-34.

  • 44. Adriens A.; De Bisshop F.; et al. Growth and real time corrosion resistance monitoring of lead decanoate coatings. Applied Surface Scince 2008 254 7351–7355.

  • 45. Kouril M.; Prosek T.; Scheffel B.; Degres Y. Corrosion monitoring in archives by the electrical resistance technique. Journal of Cultural Heritage 2014 15(2) 99-103.

  • 46. Kouril M.; Prosek T.; Scheffel B.; Dubois F. High sensitivity electrical resistance sensors for indoor corrosion monitoring. Corrosion Engineering Science and Technology 2013 48(4) 282-287.

  • 47. Prosek T.; Kouril M.; Dubus M.; Taube M.; Hubert V.; Scheffel B.; Degres Y.; Jouannic M.; Thierry D. Real-time monitoring of indoor air corrosivity in cultural heritage institutions with metallic electrical resistance sensors. Studies in Conservation 2013 58(2) 117-128.

Search
Journal information
Impact Factor


CiteScore 2018: 0.25

SCImago Journal Rank (SJR) 2018: 0.164
Source Normalized Impact per Paper (SNIP) 2018: 0.286

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 110 110 9
PDF Downloads 121 121 12