Soft computing model for analysing the effect of friction stir processing parameters on the intergranular corrosion susceptibility of aluminium alloy AA5083

Open access


Aluminium alloy AA5083 is prone to intergranular corrosion in marine environments. In an attempt to reduce the intergranular corrosion, AA5083 was subjected to friction stir processing (FSP). The FSP experimental trials were conducted as per face-centered central composite design with three levels of variation in FSP process parameters viz. tool rotation speed (TRS), tool traverse speed (TTS) and tool shoulder diameter (SD). Intergranular corrosion susceptibility of the processed specimens was assessed by performing nitric acid mass loss test. The mass loss of the specimens was correlated with the intergranular corrosion susceptibility as per the standard ASTM G67-13. The experimental results indicate that FSP had significantly reduced the intergranular corrosion susceptibility of the AA5083 alloy. Soft computing techniques namely Artificial Neural Network, Mamdani Fuzzy system, and Sugeno Fuzzy system were used to predict the intergranular corrosion (IGC) susceptibility (mass loss) of the friction stir processed specimens. Among the developed models, Sugeno fuzzy system displayed minimum percentage error in prediction. So Sugeno fuzzy system was used to analyze the effect of friction stir processing process parameters on the IGC of the processed specimens. The results suggest that stir processing of AA5083 at a TRS of 1300 rpm, TTS of 60 mm/min and SD of 21 mm would make the alloy least susceptible to intergranular corrosion.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. P. Cabot F. Centellas E. Perez and R. Loukili “Pitting and repassivation processes of Al · Zn · Mg alloys in chloride solutions containing sulphate” Electrochimica acta 1993 38 (18) 2741-2748.

  • 2. J. C. Bailey F. C. Porter A. W. Pearson and R. A. Jarman “4.1 – Aluminium and Aluminium Alloys” Corrosion (3rd Edition) pp. 4:3-3:37 Oxford: Butterworth-Heinemann 1994.

  • 3. J. A. Lyndon R. K. Gupta M. A. Gibson and N. Birbilis “Electrochemical behaviour of the β-phase intermetallic (Mg2Al3) as a function of pH as relevant to corrosion of aluminium–magnesium alloys” Corrosion Science 2013 70 290-293.

  • 4. R. H. Jones V. Y. Gertsman J. S. Vetrano and C. F. Windisch Jr “Crack-particle interactions during intergranular stress corrosion of AA5083 as observed by cross-section transmission electron microscopy” Scripta Materialia 2004 50 (10) 1355-1359.

  • 5. E. Brillas P. L. Cabot F. Centellas J. A. Garrido E. Pérez and R. M. Rodríguez “Electrochemical oxidation of high-purity and homogeneous Al–Mg alloys with low Mg contents” Electrochimica Acta 1998 43 (7) 799-812.

  • 6. R. S. Mishra P. S. De and N. Kumar “Fundamental Physical Metallurgy Background for FSW/P” Friction Stir Welding and Processing: Science and Engineering pp. 59-93 Cham: Springer International Publishing 2014.

  • 7. R. S. Mishra and Z. Ma “Friction stir welding and processing” Materials Science and Engineering: R: Reports 2005 50 (1) 1-78.

  • 8. R. Padmanaban V. Balusamy and V. R. Kishore “Effect of axial pressure and tool rotation speed on temperature distribution during dissimilar friction stir welding” Advanced Materials Research 2012 1934-1938.

  • 9. R. V. Vignesh R. Padmanaban M. Arivarasu S. Thirumalini J. Gokulachandran and R. Mutyala Sesha Satya Sai “Numerical modelling of thermal phenomenon in friction stir welding of aluminum plates” IOP Conference Series: Materials Science and Engineering 2016 149 (1) pp. 012208.

  • 10. Z. Ma “Friction stir processing technology: a review” Metallurgical and Materials Transactions A 2008 39 (3) 642-658.

  • 11. R. Padmanaban R. Vaira Vignesh M. Arivarasu K. P. Karthick and A. Abirama Sundar “Process parameters effect on the strength of Friction Stir Spot Welded AA6061” ARPN Journal of Engineering and Applied Sciences 2016 11 (9) 6030-6035.

  • 12. V. V. Ramalingam and P. Ramasamy “Modelling Corrosion Behavior of Friction Stir Processed Aluminium Alloy 5083 Using Polynomial: Radial Basis Function” Transactions of the Indian Institute of Metals 2017 70 (10) 2575-2589.

  • 13. S. Ilangovan R. V. Vignesh R. Padmanaban and J. Gokulachandran “Comparison of Statistical and Soft Computing Models for Predicting Hardness and Wear Rate of Cu–Ni–Sn Alloy” Progress in Computing Analytics and Networking pp. 559-571: Springer 2018.

  • 14. R. V. Vignesh and R. Padmanaban “Forecasting Tribological Properties of Wrought AZ91D Magnesium Alloy Using Soft Computing Model” Russian Journal of Non-Ferrous Metals 2018 59 (2) 135-141.

  • 15. B. Yegnanarayana Artificial neural networks: PHI Learning Pvt. Ltd. 2009.

  • 16. S.-C. Wang “Artificial neural network” Interdisciplinary Computing in Java Programming pp. 81-100: Springer 2003.

  • 17. G. Klir and B. Yuan Fuzzy sets and fuzzy logic: Prentice Hall New Jersey 1995.

  • 18. S. Sivanandam S. Sumathi and S. Deepa Introduction to fuzzy logic using MATLAB: Springer 2007.

  • 19. R. R. Yager and L. A. Zadeh An introduction to fuzzy logic applications in intelligent systems: Springer Science & Business Media 2012.

  • 20. G. F. V. Voort ASM Handbook Volume 9: Metallography and Microstructures pp. 1184: ASM International 2004.

  • 21. E. Pouillier A. F. Gourgues D. Tanguy and E. P. Busso “A study of intergranular fracture in an aluminium alloy due to hydrogen embrittlement” International Journal of Plasticity 2012 34 139-153.

  • 22. G. M. Scamans N. J. H. Holroyd and C. D. S. Tuck “The role of magnesium segregation in the intergranular stress corrosion cracking of aluminium alloys” Corrosion Science 1987 27 (4) 329-347.

  • 23. Y.-K. Yang and T. Allen “Direct visualization of β phase causing intergranular forms of corrosion in Al–Mg alloys” Materials Characterization 2013 80 76-85.

  • 24. S.-J. Kim S.-J. Lee J.-Y. Jeong and K.-H. Kim “Electrochemical characteristics of Al–Mg and Al–Mg–Si alloy in sea water” Transactions of Nonferrous Metals Society of China 2012 22 (S3) 881-886.

  • 25. R. Padmanaban V. Ratna Kishore and V. Balusamy “Numerical simulation of temperature distribution and material flow during friction stir welding of dissimilar aluminum alloys.” Procedia Engineering 2014 97 854-863.

  • 26. R. Goswami G. Spanos P. S. Pao and R. L. Holtz “Precipitation behavior of the ß phase in Al-5083” Materials Science and Engineering: A 2010 527 (4–5) 1089-1095.

  • 27. M. Mezbahul-Islam A. O. Mostafa and M. Medraj “Essential Magnesium Alloys Binary Phase Diagrams and Their Thermochemical Data” Journal of Materials 2014 33.

  • 28. C. Meng D. Zhang H. Cui L. Zhuang and J. Zhang “Mechanical properties intergranular corrosion behavior and microstructure of Zn modified Al–Mg alloys” Journal of Alloys and Compounds 2014 617 925-932.

Journal information
Impact Factor

CiteScore 2018: 0.25

SCImago Journal Rank (SJR) 2018: 0.164
Source Normalized Impact per Paper (SNIP) 2018: 0.286

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 334 112 5
PDF Downloads 145 86 3