Electrochemical Corrosion Characteristics of High Strength Low Alloy Domex 700 Steel After Mechanical Surface Treatment in Chloride Environment

Open access


Nowadays a large number of mechanical surface treatments of constructions materials is used in industry, mainly focusing on steel surface treatment. The aim of this study was to evaluate the effects of mechanical surface pre-treatment (grinding and shot peening) on corrosion resistance of high strength low alloy Domex 700 steel. Suitable mechanical surface treatment can by used for surface homogenization (eg. grinding) or for improvement of mechanical, strength and fatigue properties (shot peening). 0,1M NaCl solution of ambient temperature was used as an environment for electrochemical tests. Evaluation of the mechanical surface treatment effect on corrosion resistance of Domex 700 steel surface was realized by electrochemical tests: potentiodynamic polarization tests (using Tafel analysis) and electrochemical impedance spectroscopy (using equivalent circuit). From the obtained results it is possible to conclude, that the process of mechanical surface treatment by shot peening at choosen conditions has negative effect on corrosion resistance of Domex 700 steel.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Pastorek F.; Borko K.; Fintová S.; Kajánek D.; Hadzima B. Effect of surface pretreatment on quality and electrochemical corrosion properties of manganese phosphate on S355J2 HSLA steel. Coatings 2016 6 (4) 46.

  • 2. Crouch G.; Cimpoeru S. J.; Li H.; Shanmugam D. The Science of Armour Materials Chapter 2 - Armour steels pp. 55-115. Victoria (in Australia) 2017. ISBN: 978-0-08- 101002-0.

  • 3. Mohrbacher H. Green and Sustainable Manufacturing of Advanced Material Chapter 6 - High-Performance Steels for Sustainable Manufacturing of Vehicles pp. 135-163. Schilde (in Belgium) 2016. ISBN: 978-0-12-411497-5.

  • 4. Smallman R. E.; Ngan W. H. A. Modern Physical Metallurgy (8th Edition) Chapter 14 - Selected Alloys pp. 529-569. Waltham (in USA) 2014. ISBN: 978-0-08-098204-5.

  • 5. Hilditch T. B.; de Souza T.; Hodgson D. P. Welding and Joining of Advanced High Strength Steels (AHSS) Chapter 2 - Properties and automotive applications of advanced high-strength steels (AHSS) pp. 9-28. Victoria (in Australia) 2015. ISBN: 978-0-85709-436-0.

  • 6. Canale F. C. L.; Vatavuk J.; Totten E. G. Comprehensive Materials Processing Chapter 12.02 - Introduction to Steel Heat Treatment pp. 3-37. Portland (in USA) 2014. ISBN: 978-0-12-803581-8.

  • 7. Militzer M. Comprehensive Materials Processing Chapter 1.10 - Thermomechanical Processed Steels pp. 191-216. Vancouver (in Canada) 2014. ISBN: 978-0-12-803581-8.

  • 8. Banerjee K. M. Comprehensive Materials Finishing Chapter 2.8 - Heat Treatment of Commercial Steels for Engineering Applications pp. 180-213. Jaipur (in India) 2017. ISBN: 978-0-12-803581-8.

  • 9. Han S. H.; Han J. W.; Nam Y. Y.; Cho H. I. Fatigue life improvement for cruciform welded joint by mechanical surface treatment using hammer peening and ultrasonic nanocrystal surface modification. Fatigue and Fracture Engineering Materials and Structures 2009 32 573-579.

  • 10. Zhongqiu F.; Bohai J.; Xiangming K.; Xiang Ch. Grinding treatment effect on rib-to-roof weld fatigue performance of steel bridge decks. Journal of Constructional Steel Research 2017 129 163-170.

  • 11. Neslušan M.; Mičieta B.; Mičietová A.; Čiliková M.; Mrkvica I. Detection of tool breakage during hard turning through acoustic emission at low removal rates. Measurement 2015 70 1-13.

  • 12. Mhaede M.; Pastorek F.; Hadzima B. Influence of shot peening on corrosion properties of biocompatible magnesium alloy AZ31 coated by dicalcium phosphate dihydrate (DCPD). Materials Science and Engineering: C 2014 39 330-335.

  • 13. Trško L.; Guagliano M.; Bokůvka O.; Nový F. Fatigue life of AW 7075 Aluminium Alloy after severe shote peening treatment with different intensities. Procedia Engineering 2014 74 246-252.

  • 14. Miková K.; Bagherifard S.; Bokůvka O.; Guagliano M.; Trško L. Fatigue behavior of X70 microalloyed steel after severe shot peening. International Journal of Fagitue 2013 55 33-42.

  • 15. Trško L.; Bokůvka O.; Nový F.; Guagliano M. Effect of severe shot peening on ultra-high-cycle fatigue of a lowalloy steel. Mareials & Design 2014 57 103-113.

  • 16. Dieng L.; Amine D; Falaise Y.; Chataigner S. Parametric of the finite modeling of shot peening on welded joints. Journal of Constructional Steel Research 2017 130 234-347.

  • 17. Li X.; Zhang J.; Wang Y.; Ma M.; Shen S.; Song X. The dual role of shot peening in hydrogen-assisted cracking of PSB1080 high strength steel. Mareials & Design 2016 110 602-615.

  • 18. Závodská D.; Guagliano M.; Bokůvka O.; Trško L. Fatigue resistance of low alloy steel after shot peening. Materials today: Proceedings 2016 3 1220-1225.

  • 19. Frankel G. S. Electrochemical techniques in corrosion: status limitations and needs. J. ASTM International 2008 5 3-40.

  • 20. Ariza E.; Rocha L. A. Evaluation of corrosion resistance of multi-layered Ti/glass-ceramic interfaces by electrochemical impedance spectroscopy. Materials Science Forum 2005. 492-493 189-194.

  • 21. Han X. G.; Zhu F.; Zhu X. P.; Lei M. K.; Xu J. J. Electrochemical corrosion behavior of modified MAO film on magnesium alloy AZ31 irradiated by high-intensity pulsed ion beam. Surface Coatings Technology 2013 228 164-170.

  • 22. Skublova L.; Hadzima B.; Borbas L.; Vitosova M. The influence of temperature on corrosion properties of titanium and stainless steel biomaterials. Materials Engineering 2008 15 18-22.

Journal information
Impact Factor

CiteScore 2018: 0.25

SCImago Journal Rank (SJR) 2018: 0.164
Source Normalized Impact per Paper (SNIP) 2018: 0.286

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 312 212 3
PDF Downloads 182 126 0