Materials for use in calcium looping technology for CCS – corrosion processes in high-temperature CO2

Open access


Carbon Capture and Storage (CCS) technologies are a perspective solution to reduce the amount of CO2 emissions. One of promising methods is Ca-looping, which is based on carbonation and calcination reactions. During both of these processes, especially calcination, high temperatures (650-950°C) are required. This means high demands on the corrosion resistance of equipment materials. Therefore, we carried out a study to suggest materials with suitable properties for calciner construction, which have to be particularly heat resistant: stainless steels (AISI 304, AISI 316L and AISI 316Ti) and nickel alloys (Inconel 713, Inconel 738, Incoloy 800H). A special device simulating calciner environment was built for this purpose. Chosen materials were tested in temperature 900°C, atmospheric pressure and gaseous environment with composition that can be possible in a calciner. The surfaces of materials were evaluated to determine composition and properties of formed oxide layers. High temperature oxidation was observed on all tested materials and oxide exfoliation occurred on some of tested materials (304, 316L).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Blamey J. Anthony E. J. Wang J. Fenell P. S.: The calcium looping cycle for large-scale CO2 capture. Progress in Energy and Combustion Science 2010 36 260-279.

  • 2. Ciahotný K. Staf M. Hlinčík T. Vrbová V. Tekáč J. Jiříček I.: Vysokoteplotní karbonátová smyčka - moderní metoda odstraňování CO2 ze spalin. Http:// (Accesed 9 May 2017).

  • 3. Sim S. Cole I.S. Choi Y.-S. Birbilis N.: A review of the protection strategies against internal corrosion for the safe transport of supercritical CO2 via steel pipelines for CCS purposes. International Journal of Greenhouse Gas Control 2014 29 185-199.

  • 4. Firouzdor V. Sridharan K. Cao G. Anderson M. Allen T.R.: Corrosion of a stainless steel and nickel-based alloys in high temperature supercritical carbon dioxide environment. Corros. Sci. 2013 69 281-291.

  • 5. Cao G. et al.: Corrosion of austenitic alloys in high temperature supercritical carbon dioxide. Corros. Sci. 2012 62 246-255.

  • 6. Berstad D. Anantharaman R. Jordal K.: Post-combustion CO2 capture from a natural gas combined cycle by CaO/ CaCO3 looping. International Journal of Greenhouse Gas Control 2012 11 25-33.

  • 7. Rouillard F. Furukawa T.: Corrosion of 9-12Cr ferritic-martensitic steels in high-temperature CO2. Corros. Sci. 2016 105 120-132.

  • 8. Gheno T. Monceau D. Zhang J.Q. Young D. J.: Carburisation of ferritic Fe-Cralloys by low carbon activity gases. Corros. Sci. 2011 53 2767-2777.

  • 9. Young D. Huczkowski P. Olszewski T. Huttel T. Singheiser L. Quadakkers W.J.: Non-steady state carburisation of martensitic 9-12%Cr steels in CO2 rich gases at 550◦C. Corros. Sci. 2014 88 161-169.

  • 10. Převodní tabulka norem nerezových materiálů. (Accesed 29 Feb 2017).

  • 11. Vnouček M.: Nikl a jeho slitiny Titan a jeho slitiny. (Accessed 12 Apr 2017).

  • 12. Parks C. J.: Corrosion of Candidate High Temperature Alloys in Supercritical Carbon Dioxide. Master Thesis Carleton University 2013.

  • 13. Xu N. Monceau D. Young D. Furtado J.: High temperature corrosion of cast heat resisting steels in CO + CO2 gas mixtures. Corros. Sci. 2008 50 2398-2406.

  • 14. Naing Aung N. Liu X.: Effect of SO2 in flue gas on coal ash hot corrosion of Inconel 740 alloy - A high temperature electrochemical sensor study. Corros. Sci. 2013 76 390-402.

  • 15. Tan L. Anderson M. Taylor D. Allen T.R. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide. Corros. Sci. 2011 53 3273-3280.

Journal information
Impact Factor

CiteScore 2018: 0.25

SCImago Journal Rank (SJR) 2018: 0.164
Source Normalized Impact per Paper (SNIP) 2018: 0.286

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 216 87 5
PDF Downloads 105 58 6