Study of damage extent to glass fibre in glass-fibre fabric reinforcement during exposure simulating concrete pore solution

Open access

Abstract

The paper evaluates extent of corrosion damage to composite glass-fibre fabric reinforcement in environment simulating concrete pore solutions (pH 12.6, 13.0, 13.5) and carbonated concrete contaminated with chlorides (pH 8.1 + Cl-) using the FT-IR and SEM/EDS techniques. Also, the effect of corrosion damage on tensile strength of segmented glass fibre as well as the presence of specific protective organic coating on glass fibre were studied. The results demonstrate local corrosion damage of samples at pH 13.5 and on the other hand high stability in environment simulating carbonated concrete and carbonated concrete contaminated with chlorides. The study also suggests unevenness of organic coating with occurrence of localized porosity which is related to aforementioned corrosion damage. Corrosion damage in FT-IR spectra manifests by changes in peaks signalling hydrolysis of protective organic coating and occurrence of peaks suggesting presence of Ca2+ rich corrosion products.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Collepardi M.; Moderní beton 1st ed.; ČKAIT: Pelhřimov 2009.

  • 2. Helland S.; Navrhování zaměřené na životnost: implementace zásad zahrnutých v model code 2010 do provozní normy ISO 16204. Beton TKS 2013 6 3-10.

  • 3. Bertolini L.; et al. Corrosion of Steel in Concrete (Prevention Diagnosis Repair) WILEY-VCH Verlag GmBH and Co. KGaA: Weinheim 2004. 6. Böhni H.; et al. Corrosion in reinforced concrete structures 1st ed.; Woodhead Publishing Ltd and CRC Press LLC: Woodhead Publishing Ltd 2005.

  • 4. Böhni H.; et al. Corrosion in reinforced concrete structures 1st ed.; Woodhead Publishing Ltd and CRC Press LLC: Woodhead Publishing Ltd 2005.

  • 5. Poursaee A.; et al. Corrosion of steel in concrete structures 1st ed.; Woodhead Publishing Ltd. Woodhead Publishing Ltd 2016.

  • 6. Andrade C.; et al. Protection System for Reinforcement. CEB-Bulletin D´Information 1992 211 9-15.

  • 7. SVÚOM s.r.o.; TP-136: Povlakovaná výztuž do betonu SVÚOM 2000.

  • 8. Bittner T.; et al. Experimental Tests of White UHPC Plates Reinforced by PVA Fibres and Textile Glass Reinforcement Advanced Materials Research 2015 1124 83-88.

  • 9. Bouška P.; et al. Experimental investigation of structural element made from high-performance textil concrete loaded by the bending moment Sborník Fibre Concrete 2015 Praha 8 s.

  • 10. Bittner T.; et al. Vývoj betonu s nekonvenční výztuží Workshop Kloknerova ústavu 2015 Praha.

  • 11. Walton P. L. Majumdar A. J.; Cement-based composites with mixtures of different types of fibres Composites 1975 6 (5) 209-216.

  • 12. Kume M.; US 4243421-A (Alkali-resistant glass composition) 6/1981.

  • 13. Bittner T. Bouška P. Kostelecká M. Vokáč M. Experimental Investigation of Mechanical Properties of Textile Glass Reinforcement Applied Mechanics and Materials 2015 732 45-48.

  • 14. Naaman A. E.; Textile reinforced cement composites: competitive status and research directions International RILEM Conference on Material Science 2010 Aachen 22 s.

  • 15. Colombo I.G.; et al. Bending behavior of textile reinforced concrete sandwich beams Construction and building materials 2015 95 675-685.

  • 16. Mleziva J.; Polymery-výroba struktura vlastnosti a použití Sobotáles:Praha 1993.

  • 17. Dongwei W. Zhang. X. Luo S. Li. S.; Preparation and property analysis of melamine formaldehyde foam Advances in Materials Physics and Chemistry 2012 2 63-67.

  • 18. Zhang J. Wang X. Zhang S. Gao Q. Li J. Effects of melamine addition stage on the performance and curing behavioue of melamine-urea-formaldehyde (MUF) resin BioResources 2013 8 (4) 5500-5514.

  • 19. Osswald T. A. Menges G. Material science of polymers for engineers (third edition) Hanser:München 2012.

  • 20. Castro Y. Aparicio M. Moreno R. Durán A. Silica-zirconia sol-gel coatings obtained by different synthesis routes Journal of Sol-Gel Science and Technology 2005 35 (1) 41-50.

  • 21. Parashar V. K. Raman V. Bahl O. P.; Thermal evolution of sol-gel derived zirkonia and binary oxides of zirkoniasilica Journal of Materials Science Letters 1996 15 1625-1629.

  • 22. Nogami M.; Glass preparation of the ZrO2-SiO2 system by the sol-gel process from metal alkoxides Journal of Non-Crystalline Solids 1985 69 (2-3) 415-423.

  • 23. Bosman H. J. M. Kruissink E. C. Vanderspoel J. Vandenbrink F.; Characterization of the acid strength of SiO2-ZrO2 mixed oxides Journal of Catalysis 1994 148 (2) 660-672.

  • 24. Ducháček V.; Polymery-výroba vlastnosti zpracování použití VŠCHT Praha 2011.

  • 25. Prokopová I.; Makromolekulární chemie VŠCHT Praha 2007.

Search
Journal information
Impact Factor


CiteScore 2018: 0.25

SCImago Journal Rank (SJR) 2018: 0.164
Source Normalized Impact per Paper (SNIP) 2018: 0.286

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 231 100 5
PDF Downloads 132 90 4