Parameters influencing the low-cycle fatigue life of materials in pressure water reactor nuclear power plants / Parametry ovlivòující únavové chování materiálù pro tlakovodní jaderné reaktory v režimu nízkocyklové únavy

Open access

Abstract

In this literature review we identify and quantify the parameters influencing the low-cycle fatigue life of materials commonly used in nuclear power plants. The parameters are divided into several groups and individually described. The main groups are material properties, mode of cycling and environment parameters. The groups are further divided by the material type - some parameters influence only certain kind of material, e.g. sulfur content may decreases fatigue life of carbon steel, but is not relevant for austenitic stainless steel; austenitic stainless steel is more sensitive to concentration of dissolved oxygen in the environment compared to the carbon steel. The combination of parameters i.e. conjoint action of several detrimental parameters is discussed. It is also noted that for certain parameters to decrease fatigue life, it is necessary for other parameter to reach certain threshold value. Two different approaches have been suggested in literature to describe this complex problem - the Fen factor and development of new design fatigue curves. The threshold values and examples of commonly used relationships for calculation of fatigue lives are included. This work is valuable because it provides the reader with long-term literature review with focus on real effect of environmental parameters on fatigue life of nuclear power plant materials.

1. Yao, J.; Munse, W. Low-cycle Fatigue of Metals. Literature Review; Defense Technical Information Center, 1961.

2. Deardorf, K. K. C. J., Fujikawa A.F. A survey of current US nuclear plant fatigue issues. 3rd International Conference on Fatigue of Reactor Componentss. 2004.

3. Materials Reliability Program: Operating Experience Regarding Thermal Fatigue of Piping Connected To PWR Reactor Coolant Systems (MRP-85).

4. Ehrnsten, U.; Ivanchenko, M.; Nevdacha, N.; Yagozinskyy, Y.; Toivonen, A.; Hänninen, H. Dynamic Strain Ageing of Deformed Nitrogen-alloyed AISI 316 Stainless Steels. 3rd International Conference on Fatigue of Reactor Conference. 2004.

5. Baldwin, E.; Sokol, G.; Coffin, L. Cyclic Strain Fatigue on AISI Type 347 Stainless Steel. Proceedings ASTM. 1957.

6. Coffin, L.; Read, J. A Steel of the Strain Cycling and Fatigue Behavior of a Cold-Worked Metal. International Conference on Fatigue. 1957.

7. Suhr, R. The effect of surface fi nish on high cycle fatigue of a low alloy steel. EGF1. 2013.

8. Hanley, B. C.; Dolant, T. J. Metals Engineering - Design; Soc. Mech. Engrs., 1953.

9. Narayanan, R.; Kalyanaraman, V.; Sathakumar, A.; Seetharaman, S.; Satish Kumar, S.; Arul Jayachandran, S.; Senthil, R. Teaching Material on Structural Steel Design for Civil/ Structural Engineering; 2001.

10. Coffin, L. The Problem of Thermal Stress Fatigue in Austenitic Steels at Elevated Temperatures. Symposium on Effect of Cyclic Heating and Stressing on Metals at Elevated Temperatures. 1954.

11. Iida, K.; Bannai, T.; Higuchi, M.; Tsutsumi, K.; Iida, K.; Bannai, T.; Sakaguchi, K. Comparison of Japanese MITI Guideline and Other Methods for Evaluation of Environmental Fatigue Life Reduction. Pressure Vessel and Piping Codes and Standards. 2001; pp 73-81.

12. Mehta, H. S.; Gosselin, S. R. An Environmental Factor Approach to Account for Reactor Water Effects in Light Water Reactor Pressure Vessel and Piping Fatigue Evaluations. Fatigue and Fracture. 1996; pp 171-185.

13. Chopra, O.; Shack, W. J. Evaluation of Effects of LWR Coolant Environments on Fatigue Life of Carbon and Low-Alloy Steels. Evaluation of Effects of LWR Coolant Environments on Fatigue Life of Carbon and Low-Alloy Steels, in Effects of the Environment on the Initiation of Crack Growth, ASTM STP 1298. 1997; pp 247-266.

14. Chopra, O. K.; Shack, W. J.; Nuclear Engineering and Design 1998,184, 49-76.

15. Chopra, O.; Shack, W. J. Effects of LWR Coolant Environments on Fatigue Design Curves of Carbon and Low- Alloy Steels; 1998.

16. Chopra, O.; Shack, W. Journal of Pressure Vessel Technology 1999, 121, 49-60.

17. Chopra, O.; Shack, W. Environmental Effects on Fatigue Crack Initiation in Piping and Pressure Vessel Steels; 2001.

18. Fujiwara, M.; Endo, T.; Kanasaki, H. Strain Rate Effects on the Low-Cycle Fatigue Strength of 304 Stainless Steel in High-Temperature Water Environment; Fatigue Life: Analysis and Prediction. Proc. Intl. Conf. and Exposition on Fatigue, Corrosion Cracking, Fracture Mechanics, and Failure Analysis. 1986; pp 309-313.

19. Higuchi, M.; Iida, K. Reduction in Low-Cycle Fatigue Life of Austenitic Stainless Steels in High-Temperature Water. Pressure Vessel and Piping Codes and Standards. 1997; pp 79-86.

20. Kanasaki, H.; Umehara, R.; Mizuta, H.; Suyama, T. Effect of Strain Rate and Temperature Change on the Fatigue Life of Stainless Steel in PWR Primary Water. Trans. 14th Intl. Conf. on Structural Mechanics in Reactor Technology (SMiRT 14). 1997; pp 485-493.

21. Chopra, O.; Muscara, J. Effects of Light Water Reactor Coolant Environments on Fatigue Crack Initiation in Piping and Pressure Vessel Steels. Proc. 8th Intl. Conference on Nuclear Engineering, 2.08 LWR Materials Issue. 2000.

22. Tsutsumi, K.; Dodo, T.; Kanasaki, H.; Nomoto, S.; Minami, Y.; Nakamura, T. Fatigue Behavior of Stainless Steel under Conditions of Changing Strain Rate in PWR Primary Water. Pressure Vessel and Piping Codes and Standards. 2001; pp 135-141.

23. Benham, P. Metallurgical Reviews 1958, 3, 203-234.

24. Johansson, A. Fatigue of steels at constant strain amplitude and elevated temperature. Colloquium on Fatigue. 1956; pp 112-122.

25. Solin, J.; Karjalainen-Roikonen, P.; Arilahti, E.; Moilanen, P. Low cycle behaivor of 316 NG alloy in PWR environment. 2004.

26. Gangloff, R. P.; Ives, M. B. Environment Induced Cracking of Metals.1990.

27. Chopra, O.; Shack, W. J. Review of the Margins for ASME Code Fatigue Design Curve - Effects of Surface Roughness and Material Variability; 2003.

28. Higuchi, M.; Iida, K. Nuclear Engineering and Design 1991, 129, 293-306.

29. Katada, Y.; Nagata, N.; Sato, S. ISIJ Intl. 1993, 31, 877-883.

30. Nakao, G.; Kanasaki, H.; Higuchi, M.; Iida, K.; Asada, Y. Effects of temperature and dissolved oxygen content on fatigue life of carbon and low alloy steels in LWR water environment; 1995.

31. Wire, G.; Li, Y. Initiation of environmentally-assisted cracking in low-alloy steels; 1996.

32. Kanasaki, H.; Umehara, R.; Mizuta, H.; Suyama, T. Fatigue Lives of Stainless Steels in PWR Primary Water. Trans. 14th Intl. Conf. on Structural Mechanics in Reactor Technology (SMiRT 14). 1997; pp 473-483.

33. Tsutsumi, K.; Kanasaki, H.; Umakoshi, T.; Nakamura, T.; Urata, S.; Mizuta, H.; Nomoto, S.; Fatigue Life Reduction in PWR Water Environment for Stainless Steels. Assessment Methodologies for Preventing Failure: Service Experience and Environmental Considerations. 2000; pp 23-24.

34. Higuchi, M. Development of Evaluation Method of Fatigue Damage on Operating Plant Components in Considering Environmental Effect of LWR Coolant. 3rd International Conference on Fatigue of Reactor Components. 2004.

Koroze a ochrana materialu

The Journal of Association of Corrosion Engineers (Asociace korozních inženýru)

Journal Information


CiteScore 2018: 0.25

SCImago Journal Rank (SJR) 2018: 0.164
Source Normalized Impact per Paper (SNIP) 2018: 0.286

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 168 89 3
PDF Downloads 100 79 8