Categorical Interpretation of Modal Structures under Bisimulation

Nino Guallart 1
  • 1 Universidad de Sevilla,

Abstract

In this work we summarise the concept of bisimulation, widely used both in computational sciences and in modal logic, that characterises modal structures with the same behaviour in terms of accessibility relations. Then, we offer a sketch of categorical interpretation of bisimulation between modal structures, which comprise both the structure and the valuation from a propositional language.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • (1) Alechina, N., Mendler, M., De Paiva, V., & Ritter, E. (2001, September). Categorical and Kripke semantics for constructive S4 modal logic. En International Workshop on Computer Science Logic (pp. 292–307). Springer Berlin Heidelberg.

  • (2) Van Benthem, J. (1976). Modal correspondence theory [Ph.D. Thesis]. University of Amsterdam, Netherlands.

  • (3) Blackburn, P., De Rijke, M., & Venema, Y. (2001). Modal logic, volume 53 of Cambridge tracts in theoretical computer science.

  • (4) Van Ditmarsch, H., van Der Hoek, W., & Kooi, B. (2007). Dynamic epistemic logic (Vol. 337). Springer Science & Business Media.

  • (5) Gerbrandy, J.D. (1999). Bisimulations on planet Kripke. ILLC Dissertation Series.

  • (6) Goranko, V., & Otto, M. (2007). 5 Model theory of modal logic. Studies in Logic and Practical Reasoning, 3, 249–329.

  • (7) Hennessy, M., & Milner, R. (1980). On observing nondeterminism and concurrency. Automata, Languages and Programming, 299–309.

  • (8) Keller, R.M. (1976). Formal verification of parallel programs. Communications of the ACM, 19(7), 371–384.

  • (9) Park, D. (1981). Concurrency and automata on infinite sequences. In Theoretical computer science (pp. 167–183). Springer Berlin Heidelberg.

  • (10) Sangiorgi, D. (2009). On the origins of bisimulation and coinduction. ACM Transactions on Programming Languages and Systems (TOPLAS), 31(4), 15.

  • (11) Stirling, C. (2012). Bisimulation and logic. Sangiorgi and Rutten [24, Chapter 4], 173–196.

  • (12) Venema, Y. (2007). 6 Algebras and coalgebras. Studies in Logic and Practical Reasoning, 3, 331–426.

OPEN ACCESS

Journal + Issues

Search