The Role of Intuition and Formal Thinking in Kant, Riemann, Husserl, Poincare, Weyl, and in Current Mathematics and Physics

Luciano Boi 1
  • 1 Ecole des Hautes Etudes en Sciences Sociales, Centre de Mathématiques,

Abstract

According to Kant, the axioms of intuition, i.e. space and time, must provide an organization of the sensory experience. However, this first orderliness of empirical sensations seems to depend on a kind of faculty pertaining to subjectivity, rather than to the encounter of these same intuitions with the real properties of phenomena. Starting from an analysis of some very significant developments in mathematical and theoretical physics in the last decades, in which intuition played an important role, we argue that nevertheless intuition comes into play in a fundamentally different way to that which Kant had foreseen: in the form of a formal or “categorical” yet not sensible intuition. We show further that the statement that our space is mathematically three-dimensional and locally Euclidean by no means follows from a supposed a priori nature of the sensible or subjective space as Kant claimed. In fact, the three-dimensional space can bear many different geometrical and topological structures, as particularly the mathematical results of Milnor, Smale, Thurston and Donaldson demonstrated. On the other hand, it has been stressed that even the phenomenological or perceptual space, and especially the visual system, carries a very rich geometrical organization whose structure is essentially non-Euclidean. Finally, we argue that in order to grasp the meaning of abstract geometric objects, as n-dimensional spaces, connections on a manifold, fiber spaces, module spaces, knotted spaces and so forth, where sensible intuition is essentially lacking and where therefore another type of mathematical idealization intervenes, we need to develop a new form of intuition.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Angel, R.B. (1974), “The Geometry of Visibles”, Noûs, 8 (2), 87–117.

  • Atiyah, M. (1979), Geometry of Yang-Mills Fields, Lezioni Fermiane, Accademia Nazionale dei Lincei, Scuola Normale Superiore, Pisa.

  • Atiyah, M. (1987), “On the work of Simon Donaldson”, pp. 3–6 in Proceedings of the International Congress of Mathematicians (Berkeley, CA, 3–11 August 1986), vol. 2. Edited by A. Gleason. American Mathematical Society, providence, RI.

  • Atiyah, M. (1988), “Topological quantum field theories”, Publications Mathématiques de l’IHÉS, 68(1), 175–186.

  • Atiyah, M. (1988), “New invariants of three and four manifolds”, in The Mathematical Heritage of Hermann Weyl, Proc. Symp. Pure Math., 48, Amer. Math. Soc., 285–299.

  • Atiyah, M. (1990), The geometry and physics of knots, Lezioni Lincee, Cambridge University Press.

  • Atiyah, M. (1997), “Geometry and physics: Where are we going?”, in Andersen et al. (eds.), Geometry and physics, Proceedings, Lecture Notes in Pure and Applied Mathematics, 184, Dekker, New York, 1–7.

  • Atiyah, M. Atiyah, M. et al. (1990), “Responses to ‘Theoretical mathematics’: toward a cultural synthesis of mathematics and theoretical physics”, edited by A. Jaffe and F. Quinn, Bulletin of the American Mathematical Society, 30 (2).

  • Baez, J. and J.P. Muniain (1994), Gauge Theories, Knot and Gravity, Series on Knots and Everything – Vol. 4, World Scientific, Singapore.

  • Becker, O. (1930), “Die apriorische Struktur des Anschauungsraum”, Philosophischer Anzeiger, 4, 129–162.

  • Becker, O. (1973), Mathematische Existenz. Untersuchungen zur Logik und Ontologie mathematischer Phänomene, Max Niemeyer Verlag, Tübingen.

  • Benacerraf, P. and H. Putnam (1987), Philosophy of Mathematics. Selected readings, Cambridge University Press, New York.

  • Bennequin, D. (2001), “Invariants contemporains”, in Panoramas et Synthèses, Société Mathématique de France, Paris, 11, 131–159.

  • Boi, L. (1989), “Objectivation et idéalisation, ou des rapports entre géométrie et physique”, Fundamenta Scientiae, 10 (1), 85–114.

  • Boi, L. (1992), “The ‘Revolution’ in the Geometrical Vision of Space in the Nineteenth Century, and the Hermeneutical Epistemology of Mathematics”, in Revolutions in Mathematics, D. Gillies (ed.), Oxford University Press, Oxford, 183–208.

  • Boi, L. (1993), “Mannigfaltigkeit und Gruppenbegriff. Zu den Veränderungen der Geometrie im 19. Jahrhundert”, Mathematische Semesterberichte, 25, 10–35.

  • Boi, L. (1995a), Le problème mathématique de l’espace. Une quête de l’intelligible, préface de R. Thom, Springer-Verlag, Heidelberg/Berlin.

  • Boi, L. (1995b), Boi, L., “Conception ‘dynamique’ en géométrie, idéalisation et rôle de l’intuition”, Theoria, 10(22), 145–161.

  • Boi, L. (1996), “La conception qualitative des mathématiques et le statut épistémologique du concept de groupe”, in Henri Poincaré: Science et Philosophie, G. Heinzmann et al. (eds.), A. Blanchard/Akademie Verlag, Paris/Berlin, 425–449.

  • Boi, L. (1997), Boi, L., “La Géométrie: clef du reel? Pensée de l’espace et philosophie des mathématique”, Philosophiques, 24 (2), 389–430.

  • Boi, L. (2001), “Sur la nature des objets mathématiques et les relations entre géométrie et physique”, in De la science à la philosophie. Hommage à Jean Largeault, M. Espinoza (ed.), L’Harmattan, Paris, 197–246.

  • Boi, L. (2003), “Philosophy of space-time”, in Cambridge History of Philosophy 1870–1945, T. Baldwin (ed.), Cambridge University Press, Cambridge, 207–218.

  • Boi, L. (2004a), “Theories of space-time in modern physics”, Synthese, 139 (3), 429–489.

  • Boi, L. (2004b), “Geometrical and topological foundations of theoretical physics: from gauge theories to string program”, International Journal of Mathematics and Mathematical Sciences, 34, 1777–1836.

  • Boi, L. (2004c), “Questions regarding Husserlian geometry and phenomenology. A study of the concept of manifold and spatial perception”, Husserl Studies, 20 (3), 207–267.

  • Boi, L. (2006a), “Nouvelles dimensions mathématiques et épistémologiques du concept d’espace en physique relativiste et quantique”, in L’espace physique, entre mathématique et philosophie, M. Lachièze-Rey (ed.), EDP Sciences, Paris, 101–133.

  • Boi, L. (2006b), “The Aleph of Space. On some extensions of geometrical and topological concepts in the twentieth-century mathematics: from surfaces and manifolds to knots and links”, in What is Geometry?, G. Sica (ed.), Polimetrica International Scientific Publisher, Milan, 79–152.

  • Boi, L. (2006c), “Mathematical Knot Theory”, in Encyclopedia of Mathematical Physics, J.-P. Françoise, G. Naber, T.S. Tsun (eds.), Elsevier, Oxford, 399–406.

  • Boi, L. (2009a), “Geometria e dinamica dello spazio-tempo nelle teorie fisiche recenti. Su alcuni problemi concettuali della fisica contemporanea”, Giornale di Fisica, 50 (1), 1–10.

  • Boi, L. (2009b), “Ideas of geometrization, geometric invariants of low-dimensional manifolds, and topological quantum field theories”, International Journal of Geometric Methods in Modern Physics, 6 (5), 701–757.

  • Boi, L. (2009c), “Images et diagramme des objets et de leurs transformations dans l’espace”, Visibles, 5, 45–78.

  • Boi, L. (2011a), The Quantum Vacuum. A Scientific and Philosophical Concept, from Electrodynamics to String Theory, and the Geometry of the Microscopic World, The Johns Hopkins University Press, Baltimore.

  • Boi, L. (2011b), Morphologie de l’invisible. Transformations d’objets, formes de l’espace, singularités phénoménales et pensée diagrammatique, Presses Universitaires de Limoges.

  • Boi, L. (2012a), “Fondamenti geometrici e problemi filosofici dello spaziotempo. Dalla relatività generale alla teoria delle supercorde”, Isonomia - Rivista di Filosofia, 1, 1–37.

  • Boi, L. (2016), “Imagination and Visualization of Geometrical and Topological Forms in Space. On Some Formal, Philosophical and Pictorial Aspects of Mathematics”, in Philosophy of Science in the 21 st Century – Challenges and Tasks, O. Pombo and G. Santos (eds.), Documenta 9, CFCUL Lisbon, 163–221.

  • Bombieri, E. (2000), “Problems of the Millenium: The Riemann Hypothesis”, CLAY.

  • Brouwer, L.E.J. (1912), “Intuitionism and Formalism”, Bulletin of the American Mathematical Society, 20, 81–96.

  • Brouwer, L.E.J. (1975), Collected Works, Vol. 1: Philosophy and Foundations of Mathematics, North-Holland, Amsterdam.

  • Carter, J.S. (1995), How Surfaces Intersect in Space. An Introduction to Topology, Series on Knots and Everything, Vol. 2., World Scientific, Singapore.

  • Cassirer, E. (1910), Substanzbegriff und Funktionbegriff, Springer, Berlin.

  • Cavaillès, J. (1962), Philosophie mathématique, Hermann, Paris.

  • Châtelet, G. (1988), “Intuition géométrique et intuition physique”, CISM, Courses and Lectures, No. 305, Springer-Verlag, Berlin Heidelberg, 100–114.

  • Clifford, W.K. (1879), “The Philosophy of Pure Sciences”, in: Lectures and Essays, Vol. I, Macmillan, London, 254–340.

  • Conrey, B. (2003), “The Riemann Hypothesis”, Notices of AMS, March, 341–353.

  • Coxeter, H.S.M. (1998), Non-Euclidean Geometry (sixth ed.), The Mathematical Association of America.

  • De Jong, W.R. (1997), “Kant’s Theory of Geometrical Reasoning and the Analytic-Synthetic Distinction. On Hintikka’s Interpretation of Kant’s Philosophy of Mathematics”, Studies in History and Philosophy of Science, 28 (1), 141–166.

  • Desanti, J.-T. (1983), Les idéalités mathématiques, Seuil, Paris.

  • Donaldson, S.K. (1983), “An application of gauge theory to the topology of 4-manifolds”, Journal of Differential Geometry, 18, 279–315.

  • Eilan, N., McCarthy, R. and B. Brewer (Eds.) (1993), Spatial Representation. Problems in Philosophy and Psychology, Oxford University Press, Oxford.

  • Feist, R. (2004), Husserl and the Sciences, University of Ottawa Press.

  • Feist, R. (2002), “Weyl’s Appropriation of Husserl’s and Poincaré’s Thought”, Synthese, 132 (3), 273–301.

  • Freedman M. and Quinn F. (1990), Topology of 4-Manifolds, Princeton University Press, Princeton.

  • Friedman, M. (2013), Kant’s Construction of Nature: A Reading of the “Metaphysical Foundations of Natural Sciences”, Cambridge University Press.

  • Friedman, M. (1992), Kant and the Exact Sciences, Harvard University Press.

  • Friedman, M. (1985), “Kant’s theory of geometry”, The Philosophical Review, Vol. XCIV, No. 4, 455–506.

  • Heijenoort, J. van, (ed.) (1967), From Frege to Gödel, Harvard University Press, Cambridge, MA.

  • Gibson, J.J. (1979), The Ecological Approach to Visual Perception, Houghton Mifflin, Boston.

  • Gödel, K. (1986), Collected Works, Vol. 1, edited by S. Feferman et al., Oxford University Press, Oxford.

  • Gonseth, F. (1974), Les Mathématiques et la Réalité, A. Blanchard, Paris.

  • Goodman, N.D. (1979, “Mathematics as an objective science”, American Mathematical Monthly, 86 (7), 540–551.

  • Gromov, M. (2000), “Spaces and Questions”, in: Visions in Mathematics. GAFA 2000, special volume, N. Alon et al. (Eds.), Birkhäuser, Basel, 118–161.

  • Gordon, I.E. (1997), Theories of Visual Perception, John Wiley & Sons, Chichester.

  • Hadamard, J. (1945), The psychology of invention in the mathematical field, Princeton University Press, Princeton.

  • Helmholtz, H. (1997), Epistemological Writings, edited by R.S. Cohen and Y. Elkana, Boston Studies in the Philosophy of Science, Vol. 37, D. Reidel, Dordrecht.

  • Hilbert, D. (1899), Die Grundlagen der Geometrie, Teubner, Leipzig.

  • Hilbert D., Cohn-Vossen S. (1932), Anschauliche Geometrie, Springer, Berlin.

  • Hintikka, J. (1996), La philosophie des mathématiques chez Kant, PUF, Paris.

  • Husserl, E. (1921), Logische Untersuchungen VI, zweiter Band: Elemente einer Phänomenologischen Aufklärung der Erkenntnis, Max Niemeyer, Halle.

  • Husserl, E. (1973), Ding und Raum, Vorlesungen 1907, edited by U. Claesges, Martinus Nijhoff, The Hague.

  • Husserl, E. (1983), Husserliana - Collected Papers, Vol. XXI: Studien zur Arithmetik und Geometrie, Edited by I. Strohmeyer, Martinus Nijhoff Publishers, The Hague.

  • Kant, I., Kritik der reinen Vernunft (1781–1787), new ed.: Meiner, Hambourg, 1990.

  • Kant, I., Kritik der reinen Vernunft (1786), Metaphysische Anfangsgründe der Naturwissenschaft, J.F. Hartknoch, Riga.

  • Kant, I., Kritik der reinen Vernunft (1980), Opus Postumum, translated and presented by F. Marty, PUF, Paris.

  • Kauffman, L. (1988), “New invariants in knot theory”, American Mathematical Monthly, 95, 195–242.

  • Kauffman, L. (1987), On Knots, Princeton University Press, Princeton.

  • Kitcher, P. (1984), The nature of mathematical knowledge, Oxford University Press, New York.

  • Kitcher, P. (1988), “Mathematical Progress”, Revue Internationale de Philosophie, special issue on “Philosophy of Mathematics”, P. Kitcher (ed.), 42 (167), 518–540.

  • Klein, F. (1979), Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert (first ed., 1927), Springer-Verlag, Berlin Heidelberg.

  • Kreisel, G. (1965), “Mathematical Logic”, in Lectures in Modern Mathematics, Wiley, New York, 95–195.

  • Kronheimer P. and Mrowka T. (1994), “Recurrence relations and asymptotic for four-manifolds”, Bull. Amer. Math. Soc., 30, 215–221.

  • Lakatos, I. (1978), Mathematics, science and epistemology, Philosophical Papers, Vol. 2, Cambridge University Press, Cambridge.

  • Largeault, J. (1990), “Formalisme et intuitionnisme en philosophie des mathématiques”, Revue philosophique, 3 (1990), 521–546.

  • Largeault, J. (1993), Intuition et intuitionnisme, Vrin, Paris.

  • Lautman, A. (1937), Essai sur les notions de structure et d’existence en mathématiques, Hermann, Paris.

  • Lawson, H.B.Jr. (1985), The Theory of Gauge Fields in Four Dimensions, Conference Board of the Mathematical Sciences, Regional Conference Series in Mathematics, No. 58, American Mathematical Society, Providence.

  • Mac Lane, S. (1980), “The genesis of mathematical structures, as exemplified in the work of Charles Ehresmann”, Cahiers de topologie et géométrie différentielle, 21 (4), 353–365.

  • Mac Lane, S. (1986), Mathematics, Form and Function, Springer-Verlag, New York. Maddy, P. (1980), “Perception and Mathematical Intuition”, The Philosophical Review, 89 (2), 163–196.

  • Mac Lane, S. (1997), Naturalism in Mathematics, Clarendon Press, Oxford, 1997.

  • Manin, Yu I. (1981), Mathematics and Physics, Birkhäuser, Basel.

  • Milnor, J.W. (1965), Lectures on the h-cobordism theorem, Princeton University Press, Princeton.

  • Montonen, C., and D. Olive (1997), “Magnetic monopoles as gauge particles?”, Phys. Lett., 72B, 117–120.

  • Mumford, D., Series, C. and D. Wright (2002), Indra’s Pearls. The Vision of Felix Klein, Cambridge University Press.

  • Murasugi, K. (1996), Knot theory and its applications, Birkhäuser, Boston.

  • Neumann, J. von (1961), “The Mathematician. ‘The work of the mind’”, in Collected Works, Vol. I, Pergamon Press, London, 1–9.

  • Peirce, Ch. (1976), The New Elements of Mathematics, Vol. IV: Mathematical Philosophy, edited by C. Eiselle, Mouton & Co. Publishers, The Hague.

  • Penrose, R. (1989), The Emperor’s New Mind, Oxford University Press, Oxford.

  • Poincaré, H. (1898), “On the foundations of geometry”, The Monist, 9, 1–43.

  • Poincaré, H. (1902), La Science et l’Hypothèse, Flammarion, Paris.

  • Pontryagin, L.S. (1946), Topological groups, Princeton University Press, Princeton.

  • Prauss, G. (1994), “Kant and the Straight Triangle”, in Philosophy, Mathematics and Modern Physics, E. Rudolph and I.-O. Stamatescu (Eds.), Springer, Heidelberg. 226–234.

  • Resnik, M.D. (1975), “Mathematical Knowledge and Pattern Recognition”, Canadian Journal of Philosophy, 5, 25–39.

  • Resnik, M.D. (1981), “Mathematics as a Science of Patterns: Ontology and Reference”, Noûs, 15, 529–550.

  • Riemann, B. (1990), “On the Hypothesis which lie at the Basis of Geometry”, in Gesammelte mathematische Werke/Collected Papers, new edition edited by R. Narasimhan, Springer, Berlin.

  • Roseman, D. (1997a), “On Wiener’s thought on the computer as an aid in visualizing higher-dimensional forms and its modern ramifications”, in V. Mandrekar and P.R. Mesani (eds.), Proceedings of Nobert Wiener Centenary Congress, PSAM, Vol. 52, American Mathematical Society, 441–471.

  • Roseman, D. (1997b), “What Should a Surface in 4-Space Look Like?”, in Visualization and Mathematics: Experiments, Simulations, Environments, H.C. Hege & K. Polthier (eds.), Springer, Berlin, 67–82.

  • Rota, G.-C., D.H. Sharp, and R. Sokolowski (1998), “Syntax, Semantics, and the Problem of the Identity of Mathematical Objects”, Philosophy of Science, 55, 376–386.

  • Rovelli, C. (1995), “Outline of a generally covariant quantum field theory and quantum theory of gravity”, Journal of Mathematical Physics, 36 (1), 6529–6547.

  • Smale, S. (1958), “A classification of immersions of the two-sphere”, Trans. Amer. Math. Soc., 90, 281–290.

  • Thom, R. (1990), Apologie du logos, Hachette, Paris.

  • Thom, R. (1992), “L’Antériorité Ontologique du Continu”, in J.-M. Salanskis & H. Sinaceur (Eds.), Le Labyrinthe du Continu, Springer-Verlag, Heidelberg-Paris, 137–143.

  • Thurston, W.P. (1994), “On proof and progress in mathematics”, Bulletin of the American Mathematical Society, 30 (2), 161–177.

  • Tymoczko, Th. (ed.) (1998), New Directions in the Philosophy of Mathematics, Princeton University Press, Princeton.

  • Suppes, P. (1977), “Is Visual Space Euclidean?”, Synthese, 35, 397–421.

  • Tieszen, R.L. (1989), Mathematical Intuition: Phenomenology and Mathematical Knowledge, Kluwer, Dordrecht.

  • Torretti, R. (1972), “On the subjectivity of objective space”, in Proceedings of the Third International Kant Congress, L.W. Beck (ed.), D. Reidel, Dordrecht, 568–573.

  • Vuillemin, J. (1994), L’Intuitionnisme Kantien, Vrin, Paris.

  • Webb, J. (1987), “Immanuel Kant and the greater glory of geometry”, in Naturalistic Epistemology, A. Shimony and D. Nailis (Eds.), Boston Studies in the Philosophy of Science, Vol. 100, D. Reidel, Dordrecht, 17–70.

  • Weyl, H. (1949), Philosophy of Mathematics and Natural Science, Princeton University Press, Princeton.

  • Weyl, H. (1973), Das Kontinuum (first German edition: 1918), Chelsea, New York.

  • Wiener, N. (1922), “The relation of space and geometry to experience”, The Monist, 32, 12–60; 200–247; 364–394.

  • Wilder, R. (1967), “The Role of Intuition”, Science, 156, 605–610.

  • Willaschek, M. (1997), “Der transzendentale Idealismus und die Idealität von Raum und Zeit”, Zeitschrift für philosophische Forschung, 51, 537–563.

  • Witten, E. (1988), “Topological Quantum Field Theory”, Communications in Mathematical Physics, 117, 353–386.

  • Wojtowicz, R. (1997), “The Metaphysical Exposition of Space and Time”, Synthese, 113, 71–115.

  • Yang, C.N., Mills, R. (1954), “Conservation of Isotopic Spin and Isotopic Gauge Invariance”, Physical Review, 96 (1), 191–195.

  • Yu, T.T., Yang, C.N. (1975), “Concept of non-integrable phase factors and global formulation of gauge fields”, Physical Review, D12, 3845–3857.

  • Zeidler, E. (2011), Quantum Field Theory III: Gauge Theory. A Bridge between Mathematicians and Physicists, Springer-Verlag; Berlin Heidelberg.

OPEN ACCESS

Journal + Issues

Search