The Epistemological Import of Euclidean Diagrams (in a non-Euclidean world)

Open access

Abstract

In this paper I concentrate on Euclidean diagrams, namely on those diagrams that are licensed by the rules of Euclid’s plane geometry. I shall overview some philosophical stances that have recently been proposed in philosophy of mathematics to account for the role of such diagrams in mathematics, and more particularly in Euclid’s Elements. Furthermore, I shall provide an original analysis of the epistemic role that Euclidean diagrams may (and, indeed) have in empirical sciences, more specifically in physics. I shall claim that, although the world we live in is not Euclidean, Euclidean diagrams permit to obtain knowledge of the world through a specific mechanism of inference I shall call inheritance.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Avigad J. Dean E. and Mumma J. 2009 A formal system for Euclid’s elements. Review of Symbolic Logic 2 (4):700-768.

  • Barwise J. and Etchemendy J. 1996 Visual information and valid reasoning. In Allwein G. and Barwise J. (eds.) Logical Reasoning with Diagrams New York (USA): Oxford University Press pp. 3-25.

  • Brown J. R. 1999 Philosophy of Mathematics: an Introduction to the World of Proofs and Pictures. London: Routledge.

  • Bueno O. and Colyvan M. 2011 An inferential conception of the application of mathematics. Noûs 45 (2): 345-374.

  • De Risi V. 2016 Leibniz on the Parallel Postulate and the Foundations of Geometry. Basel: Birkhäuser.

  • Feynman R. 1965 The Character of Physical Law. Cambridge Mass.: MIT Press.

  • Giaquinto M. 2007 Visual Thinking in Mathematics. Oxford: Oxford University Press.

  • Giaquinto M. 2008 Visualizing in mathematics. In: Mancosu P. (ed.) The Philosophy of Mathematical Practice Oxford: Oxford University Press pp. 22-42.

  • Gray J. 1989 Ideas of Space: Euclidean Non-Euclidean and Relativistic. Oxford: Clarendon Press.

  • Kosslyn S. 1994 Image and Brain. Cambridge Mass.: MIT Press.

  • Leibniz G. 1949 New Essays Concerning Human Understanding. La Salle IL: Open Court Publishing.

  • Mancosu P. 2005 Visualization in logic and mathematics. In Mancosu P. Jørgensen K. F. and Pedersen S. A. (eds.) Visualization Explanation and Reasoning Styles in Mathematics Dordrecht: Springer pp. 13-30.

  • Mancosu P. Jørgensen K. F. and Pedersen S. A. 2005 Visualization Explanation and Reasoning Styles in Mathematics Dordrecht: Springer vol. 327.

  • Manders K. 2008a Diagram-based geometric practice. In: Mancosu P. (ed.) The Philosophy of Mathematical Practice Oxford: Clarendon Press pp. 65-79.

  • Manders K. 2008b The Euclidean diagram (1995). In: Mancosu P. (ed.) The Philosophy of Mathematical Practice Oxford: Clarendon Press pp. 80-133.

  • Miller N. 2008 Euclid and his Twentieth Century Rivals: Diagrams in the Logic of Euclidean Geometry Stanford CA: CSLI.

  • Molinini D. and Panza M. 2014 Sull’applicabilità della matematica. In: Varzi A. and Fontanari C. (eds.) La matematica nella società e nella cultura - Rivista della Unione Matematica Italiana vol. VII Serie I pp. 367-395.

  • Mumma J. 2006 Intuition formalized: Ancient and modern methods of proof in elementary geometry. PhD thesis Carnegie Mellon University.

  • Mumma J. 2010 Proofs pictures and Euclid. Synthese 175: 255-287.

  • Netz R. 1998 Greek mathematical diagrams: Their use and their meaning. For the Learning of Mathematics 18 (3): 33-39.

  • Netz R. 1999 The shaping of deduction in Greek mathematics: a study in cognitive history. Cambridge: Cambridge University Press.

  • Norman J. 2006 After Euclid: Visual Reasoning and the Epistemology of Diagrams. Stanford: CSLI Publications.

  • Panza M. 2012 The twofold role of diagrams in Euclid’s plane geometry. Synthese 186: 55-102.

  • Shepard R. N. and Cooper L. A. 1982 Mental images and their transformations. Cambridge (Mass): MIT Press.

  • Sheredos B. Burston D. C. Abrahamsen A. and Bechtel W. 2013 Why do biologists use so many diagrams? Philosophy of Science 80: 931-944.

  • Smadja I. 2012 Local axioms in disguise: Hilbert on Minkowski diagrams. Synthese 186 (1): 315-370.

  • Tennant N. 1986 The withering away of formal semantics? Mind & Language 1 (4): 302-318.

  • Thagard P. 2005 Mind: Introduction to Cognitive Sciences. The MIT Press 2nd ed.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 273 103 1
PDF Downloads 145 87 1