The Epistemological Import of Euclidean Diagrams (in a non-Euclidean world)

Daniele Molinini 1
  • 1 Department of Philosophy, Communication and Performing Arts University of Rome, ‘Roma TRE’,Italy


In this paper I concentrate on Euclidean diagrams, namely on those diagrams that are licensed by the rules of Euclid’s plane geometry. I shall overview some philosophical stances that have recently been proposed in philosophy of mathematics to account for the role of such diagrams in mathematics, and more particularly in Euclid’s Elements. Furthermore, I shall provide an original analysis of the epistemic role that Euclidean diagrams may (and, indeed) have in empirical sciences, more specifically in physics. I shall claim that, although the world we live in is not Euclidean, Euclidean diagrams permit to obtain knowledge of the world through a specific mechanism of inference I shall call inheritance.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Avigad, J., Dean, E., and Mumma, J., 2009, A formal system for Euclid’s elements. Review of Symbolic Logic, 2 (4):700-768.

  • Barwise, J. and Etchemendy, J., 1996, Visual information and valid reasoning. In Allwein, G. and Barwise, J. (eds.), Logical Reasoning with Diagrams, New York (USA): Oxford University Press, pp. 3-25.

  • Brown, J. R., 1999, Philosophy of Mathematics: an Introduction to the World of Proofs and Pictures. London: Routledge.

  • Bueno, O. and Colyvan, M., 2011, An inferential conception of the application of mathematics. Noûs, 45 (2): 345-374.

  • De Risi, V., 2016, Leibniz on the Parallel Postulate and the Foundations of Geometry. Basel: Birkhäuser.

  • Feynman, R., 1965, The Character of Physical Law. Cambridge, Mass.: MIT Press.

  • Giaquinto, M., 2007, Visual Thinking in Mathematics. Oxford: Oxford University Press.

  • Giaquinto, M., 2008, Visualizing in mathematics. In: Mancosu, P. (ed.), The Philosophy of Mathematical Practice, Oxford: Oxford University Press, pp. 22-42.

  • Gray, J., 1989, Ideas of Space: Euclidean, Non-Euclidean and Relativistic. Oxford: Clarendon Press.

  • Kosslyn, S., 1994, Image and Brain. Cambridge, Mass.: MIT Press.

  • Leibniz, G., 1949, New Essays Concerning Human Understanding. La Salle, IL: Open Court Publishing.

  • Mancosu, P., 2005, Visualization in logic and mathematics. In Mancosu, P., Jørgensen, K. F., and Pedersen, S. A. (eds.), Visualization, Explanation and Reasoning Styles in Mathematics, Dordrecht: Springer, pp. 13-30.

  • Mancosu, P., Jørgensen, K. F., and Pedersen, S. A., 2005, Visualization, Explanation and Reasoning Styles in Mathematics, Dordrecht: Springer, vol. 327.

  • Manders, K., 2008a, Diagram-based geometric practice. In: Mancosu, P. (ed.), The Philosophy of Mathematical Practice, Oxford: Clarendon Press, pp. 65-79.

  • Manders, K., 2008b, The Euclidean diagram (1995). In: Mancosu, P. (ed.), The Philosophy of Mathematical Practice, Oxford: Clarendon Press, pp. 80-133.

  • Miller, N., 2008, Euclid and his Twentieth Century Rivals: Diagrams in the Logic of Euclidean Geometry, Stanford, CA: CSLI.

  • Molinini, D. and Panza, M., 2014, Sull’applicabilità della matematica. In: Varzi, A. and Fontanari, C. (eds.), La matematica nella società e nella cultura - Rivista della Unione Matematica Italiana, vol. VII, Serie I, pp. 367-395.

  • Mumma, J., 2006, Intuition formalized: Ancient and modern methods of proof in elementary geometry. PhD thesis, Carnegie Mellon University.

  • Mumma, J., 2010, Proofs, pictures, and Euclid. Synthese, 175: 255-287.

  • Netz, R., 1998, Greek mathematical diagrams: Their use and their meaning. For the Learning of Mathematics, 18 (3): 33-39.

  • Netz, R., 1999, The shaping of deduction in Greek mathematics: a study in cognitive history. Cambridge: Cambridge University Press.

  • Norman, J., 2006, After Euclid: Visual Reasoning and the Epistemology of Diagrams. Stanford: CSLI Publications.

  • Panza, M., 2012, The twofold role of diagrams in Euclid’s plane geometry. Synthese, 186: 55-102.

  • Shepard, R. N. and Cooper, L. A., 1982, Mental images and their transformations. Cambridge (Mass): MIT Press.

  • Sheredos, B., Burston, D. C., Abrahamsen, A., and Bechtel, W., 2013, Why do biologists use so many diagrams? Philosophy of Science, 80: 931-944.

  • Smadja, I., 2012, Local axioms in disguise: Hilbert on Minkowski diagrams. Synthese, 186 (1): 315-370.

  • Tennant, N., 1986, The withering away of formal semantics? Mind & Language, 1 (4): 302-318.

  • Thagard, P., 2005, Mind: Introduction to Cognitive Sciences. The MIT Press, 2nd ed.


Journal + Issues