Hydrological modeling using the SWAT model based on two types of data from the watershed of Beni Haroun dam, Algeria

Abstract

The dam of Beni Haroun is the largest in Algeria, and its transfer structures feed seven provinces (wilayas) in the eastern part of Algeria. Due to its importance in the region, it has now become urgent to study its watershed as well as all the parameters that can influence the water and solid intakes that come into the dam. The Soil and Water Assessment Tool (SWAT) model is used to quantify the water yields and identify the vulnerable spots using two scenarios. The first one uses worldwide data (GlobCover and HWSD), and the second one employs remote sensing and digital soil mapping in order to determine the most suitable data to obtain the best results. The SWAT model can be used to reproduce the hydrological cycle within the watershed. Concerning the first scenario, during the calibration period, R2 was found between 0.45 and 0.69, and the Nash–Sutcliffe efficiency (NSE) coefficient was within the interval from 0.63 to 0.80; in the validation period, R2 lied between 0.47 and 0.59, and the NSE coefficient ranged from 0.58 to 0.64. As for the second scenario, during the calibration period, R2 was between 0.60 and 0.66, and the NSE coefficient was between 0.55 and 0.75; however, during the validation period, R2 was in the interval from 0.56 to 0.70, and the NSE coefficient within the range 0.64–0.70. These findings indicate that the data obtained using remote sensing and digital soil mapping provide a better representation of the watershed and give a better hydrological modelling.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abbaspour K.C. 2013. SWAT-CUP 2012. SWAT Calibration and Uncertainty Program – A User Manual.

  • Acharya T.D., Yang I. 2015. Exploring Landsat 8. International Journal of IT, Engineering and Applied Sciences Research. Vol. 4. No. 4 p. 4–10.

  • Anderson J.R. 1976. A land use and land cover classification system for use with remote sensor data. US Government Printing Office.

  • ANRH 2004. Carte du réseau hydroclimatologique et de surveillance de la qualité des eaux 1:500,000 [Map of the hydroclimatological network and water quality monitoring]. Alger. Agence Nationale Ressources Hydraulices.

  • ANRH 2005a. Cares des ecoulement moyens annuels sur le nord de l'algrie, 1:500 000 [Average annual discharge maps for northern Algeria, 1: 500,000]. Alger. Agence Nationale Ressources Hydraulices.

  • ANRH 2005b. Catrte des reseau hydroclimatologique et de la surveillance de la quakut2 des eaux 1:500 000 [Map of Hydroclimatological Network and Water Quality Monitoring 1: 500 000]. Alger. Agence Nationale Ressources Hydraulices.

  • ANRH 2005c. Situation des etides pedologiques et agropedologiques du nord de l'algerie (1963–2004), 1:500 000 [Situation of pedological and agro-pedological studies of northern Algeria (1963-2004), 1: 500 000]. Alger. Agence Nationale Ressources Hydraulices.

  • ANRH 2008. Carte des précipitations moyennes annuelles de l'Algérie, 1:500 000 [Map of average annual rainfall of Algeria, 1: 500 000]. Alger. Agence Nationale Ressources Hydraulices.

  • Armon R.H., Hänninen O. 2016. Environmental indicators. Springer. ISBN 9402403825 pp. 1068.

  • Arnold J., Kiniry J., Srinivasan R., Williams J., Haney E., Neitsch S. 2013. SWAT 2012 input/output documentation. Texas Water Resources Institute.

  • Arnold J.G., Moriasi D.N., Gassman P.W., Abbaspour K.C., White M.J., Srinivasan R., Santhi C., Harmel R., Van Griensven A., Van Liew M.W. 2012. SWAT: Model use, calibration, and validation. Transactions of the ASABE. Vol. 55 p. 1491–1508.

  • Arnold J.G., Srinivasan R., Muttiah R.S., Williams J.R. 1998. Large area hydrologic modeling and assessment part I: model development. Journal of the American Water Resources Association. Vol. 34 p. 73–89.

  • Aubert G. 1978. Méthodes d'analyses des sols [Methods of soil analysis]. 2nd ed. Marseille. Centre régional de documentation pédagogique pp. 191.

  • Barsi J. A., Lee K., Kvaran G., Markham B.L., Pedelty J.A. 2014. The spectral response of the Landsat-8 operational land imager. Remote Sensing. Vol. 6 p. 10232–10251. DOI 10.3390/rs61010232.

  • Bates B.C., Kundzewicz Z.W., Wu S., Palutikof J.P. (eds.) 2008. Climate change and water. Technical Paper of the Intergovernmental Panel on Climate Change. Geneva. IPCC. ISBN 978-92-9169-123-4 pp. 210.

  • Batjes N. 2009. Harmonized soil profile data for applications at global and continental scales: updates to the WISE database. Soil Use and Management. Vol. 25 p. 124–127.

  • Bishop T., Horta A., Karunaratne S. 2015. Validation of digital soil maps at different spatial supports. Geoderma. Vol. 241 p. 238–249.

  • Blanco-Canqui H., Lal R. 2010. Soil and water conservation. In: Principles of soil conservation and management. Dordrecht. Springer p. 1–19. DOI 10.1007/978-1-4020-8709-7_1.

  • Boettinger J., Ramsey R., Bodily J., Cole N., Kienast-Brown S., Nield S., Saunders A., Stum A. 2008. Landsat spectral data for digital soil mapping. In: Digital soil mapping with limited data. Eds. A.E. Hartemink, A. McBratney, M.L. Mendonça-Santos. Springer p. 193–202.

  • Boucefiane A., Meddi M., Laborde J.P., Eslamian S. 2014. Rainfall frequency analysis using extreme values distributions in the steppe region of Western Algeria. International Journal of Hydrology Science and Technology. Vol. 4 p. 348–367.

  • Brouziyne Y., Abouabdillah A., Bouabid R., Benaabidate L., Oueslati O. 2017. SWAT manual calibration and parameters sensitivity analysis in a semi-arid watershed in north-western Morocco. Arabian Journal of Geosciences. Vol. 10, 427 p. 1–13. DOI 10.1007/s12517-017-3220-9.

  • Carter M.R., Gregorich E.G. 2008. Soil sampling and methods of analysis. CRC Press. ISBN 978-0-8493-3586-0 pp. 1264.

  • De Vente J., Poesen J. 2005. Predicting soil erosion and sediment yield at the basin scale: scale issues and semiquantitative models. Earth-Science Reviews. Vol. 71 p. 95–125.

  • Douglas-Mankin K., Srinivasan R., Arnold J. 2010. Soil and Water Assessment Tool (SWAT) model: Current developments and applications. Transactions of the ASABE. Vol. 53 p. 1423–1431.

  • El-Sadek A., Irvem A. 2014. Evaluating the impact of land use uncertainty on the simulated streamflow and sediment yield of the Seyhan River basin using the SWAT model. Turkish Journal of Agriculture and Forestry. Vol. 38 p. 515–530.

  • Gassman P.W., Sadeghi A.M., Srinivasan R. 2014. Applications of the SWAT model special section: overview and insights. Journal of Environmental Quality. Vol. 43 p. 1–8.

  • Giri C.P. 2012. Remote sensing of land use and land cover: Principles and applications. CRC Press. ISBN 1420070746 pp. 477.

  • Hartemink A.E., Mcbratney A., Mendonça-Santos M.D.L. 2008. Digital soil mapping with limited data. Springer Science, Business Media pp. XXIV + 439. DOI 10.1007/978-1-4020-8592-5.

  • Krause P., Boyle D., Bäse F. 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences. Vol. 5 p. 89–97.

  • LCPC 1987. Analyse granulométrique par sédimentométrie. Méthode d'essai [Particle size analysis by sedimentometry. Test method]. LPC. No 18. Paris. Ministère de l'équipement, du logement, de l'aménagement du territoire et des transports. Laboratoire central des ponts et chaussées pp. 34.

  • Leflaive X. 2012. Water outlook to 2050: The OECD calls for early and strategic action. Global Water Forum. Discussion Paper 1219. Canberra, Australia 21.05.2012 p. 1–6.

  • Ministère du Développement Durable, de L’environnement et des Parcs du Québec 2010. Guide d’échantillonnage à des fins d’analyses environnementales. Cahier 5 – Échantillonnage des sols [Sampling guide for environmental analyzes. Book 5 – Soil sampling] [online]. Québec. Centre d’expertise en analyse environnementale du Québec. Édition courante. ISBN 978-2-550-57649-5 pp. 57. [Access 15.10.2018]. Available at: http://www.ceaeq.gouv.qc.ca/documents/publications/echantillonnage/solsC5.pdf

  • Moriasi D.N., Arnold J.G., Van Liew M.W., Bingner R.L., Harmel R.D., Veith T.L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. Vol. 50 p. 885–900. DOI 10.13031/2013.23153.

  • Mwaniki M.W., Moeller M.S., Schellmann G. 2015. A comparison of Landsat 8 (OLI) and Landsat 7 (ETM+) in mapping geology and visualising lineaments: A case study of central region Kenya. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. 40 p. 897–903. DOI 10.5194/isprsarchives-XL-7-W3-897-2015.

  • Nash J.E., Sutcliffe J.V. 1970. River flow forecasting through conceptual models. Part 1. A discussion of principles. Journal of Hydrology. Vol. 10 p. 282–290.

  • Neitsch S.L., Arnold J.G., Kiniry J.R., Williams J.R. 2011. Soil and water assessment tool. Theoretical documentation. Version 2009. Texas Water Resources Institute. Technical report. No. 406 pp. 618.

  • NF P94-056 1996. Sols : reconnaissance et essais – Analyse granulométrique – Méthode par tamisage à sec après lavage [Soil: investigation and testing – Granulometric analysis – Dry sieving method after washing].

  • Parece T., Campbell J., McGee J. 2014. Remote sensing in an ArcMap environment. VirginiaView pp. 255.

  • Rakshit A., Abhilash P.C., Singh H.B., Ghosh S. (eds.) 2017. Adaptive soil management: From theory to practices. Springer. ISBN 9789811036378 pp. 571.

  • Saxton K.E., Rawls W.J. 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal. Vol. 70 p. 1569–1578.

  • Schmidt J. (ed.) 2013. Soil erosion: Application of physically based models. Springer Science, Business Media. ISBN 3662042959 pp. 318.

  • Sergio D.Z. 2012. Modelagem hidrológica da Bacia do Rio Cubatão do Sul com modelo SWAT [Hydrological modeling of the Cubatão do Sul River Basin with SWAT model] [online]. Trabalho de Conclusão de Curso. Florianopolis. Universidade Federal de Santa Catarina pp. 120. [Access 15.10.2018]. Available at: https://repositorio.ufsc.br/bitstream/handle/123456789/125090/TCC2_Djesser_Zechner_Sergio_A5_fev_2013.pdf?sequence=1&isAllowed=y

  • Soukehal B., Cherrad S.E. 2011. Les ressources en eau dans la wilaya de mila: mobilisation, consommation et comportement de menages [Water resources in the wilaya of mila: mobilization, consumption and behavior of households]. Sciences and Technologie. D Sciences de la terre. No. 34 p. 19–25.

  • Tarald O.K. 1985. Cautionary note about R2. The American Statistician. Vol. 39 p. 279–285.

  • Tuppad P., Douglas-Mankin K., Lee T., Srinivasan R., Arnold J. 2011. Soil and Water Assessment Tool (SWAT) hydrologic/water quality model: Extended capability and wider adoption. Transactions of the ASABE. Vol. 54 p. 1677–1684. DOI 10.13031/2013.39856.

  • Vaysse K., Lagacherie P. 2015. Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France). Geoderma Regional. Vol. 4 p. 20–30. DOI 10.1016/j.geodrs.2014.11.003.

  • Williams J.R. 1995. The EPIC model. In: Computer models of watershed hydrology. Ed. V.P. Singh. Chapt. 25. Highlands Ranch, Colo. Water Resources Publications p. 909–1000.

  • Zettam A., Taleb A., Sauvage S., Boithias L., Belaidi N., Sánchez-Pérez J. 2017. Modelling hydrology and sediment transport in a semi-arid and anthropized catchment using the SWAT model: The case of the Tafna river (northwest Algeria). Water. Vol. 9. Iss. 3, 216 p. 1–18. DOI 10.3390/w9030216.

  • Zhang X.-S., Srinivasan R., Van Liew M. 2008. Multi-site calibration of the SWAT model for hydrologic modeling. Transactions of the ASABE. Vol. 51 p. 2039–2049. DOI 10.13031/2013.25407.

  • Zhang X., Izaurralde R., Zong Z., Zhao K., Thomson A. 2012. Evaluating the efficiency of a multi-core aware multiobjective optimization tool for calibrating the SWAT model. Transactions of the ASABE. Vol. 55 p. 1723–1731. DOI 10.13031/2013.42363.

OPEN ACCESS

Journal + Issues

Search