Multi-phase flow assessment for the fermentation process in mono-substrate reactor with skeleton bed

Open access

Abstract

The selected techniques were reviewed and their technological aspects were characterized in the context of multi-phase flow for biogas production. The conditions of anaerobic fermentation for pig slurry in a mono-substrate reactor with skeleton bed were analysed. The required technical and technological criteria for producing raw biogas were indicated.

Design and construction of the mono-substrate model, biogas flow reactor, developed for cooperation with livestock buildings of various sizes and power from 2.5 kW to 40 kW. The installation has the form of a sealed fermentation tank filled with a skeletal deposit constituting a peculiar spatial system with regular shapes and a rough surface.

Incorporating a plant in such a production cycle that enables the entire slurry stream to be directed from the cowshed or pig house underrun channels to the reactor operating in the flow mode, where anaerobic digestion will take place, allows to obtain a biogas.

The paper presents preliminary results of experimental investigations in the field of hydrodynamic substrate mixing system for biogas flow assessment by the adhesive bed in the context of biogas production. The aim of the study was to assessment and shows the influence of the Reynolds number on the biogas resistance factor for the fermentation process in mono-substrate reactor with adhesive deposit. The measurement results indicate a clear effect of the Reynolds number in relation to the descending flow resistance coefficient for the adhesive bed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Arshady R. 1993. Microcapsules for food. Journal of Microencapsulation Micro and Nano Carriers. Vol. 10. Iss. 4 p. 413–435. DOI 10.3109/02652049309015320.

  • Bakuła Z. Stachowiak R. Wiśniewski J. Granicka L. Bielecki J. 2013. Immobilizacja komórek – znaczenie biomedyczne [Cell immobilization – biomedical significance]. Postępy Mikrobiologii. Nr 52(3) p. 233–245.

  • Bonin S. 2008. Mikroorganizmy bioimmobilizowane [Bioimmobilized microorganisms]. Agro Przemysł. No. 6 p. 20–22.

  • Chandra J. Zhou G. Channoum M.A. 2005. Fungal biofilms and actimycotics. Current Drug Targets. Vol. 8 p. 887–894.

  • Costerton J.W. Lewandowski Z. Caldwell D.E. Korber D.R. Lappin-Scott H.M. 1995. Microbial biofilms. Annual Review of Microbiology. Vol. 49 p. 711–745.

  • Costerton J.W. Lewandowski Z. DeBeer D. Caldwell D.E. Korber D.R. James G. 1994. Biofilms the customized microniche. Journal of Bacteriology. Vol. 176(8) p. 2137–2142.

  • Currie C.R. 2001. A community of ants fungi and bacteria: A multilateral approach to studying symbiosis. Annual Review of Microbiology. Vol. 55 p. 357–380.

  • Czekała W. Gawrych K. Smurzyńska A. Mazurkiewicz J. Pawlisiak A. Chełkowski D. Brzoski M. 2017. The possibility of functioning micro-scale biogas plant in selected farm. Journal of Water and Land Development. No. 35 p. 19–25. DOI 10.1515/jwld-2017-0064.

  • Donlan R.M. 2002. Biofilms: Microbial life on surfaces. Emerging Infectious Diseases. Vol. 8. No. 9 p. 881–890.

  • Furowicz A. Boroń-Kaczmarska A. Ferlas M. Czernomysy-Furowicz D. Pobucewicz A. 2010. Biofilm bakteryjny oraz inne elementy i mechanizmy pozwalające na przeżycie drobnoustrojom w warunkach ekstremalnych [Bacterial biofilm and other elements and mechanisms that allow microbial survival under extreme conditions]. Medycyna Weterynaryjna. T. 66. Nr 7 p. 444–448.

  • ITP 2018. Protokół przekazania procesu technologicznego [Report on the transfer of the technological process]. Poznań. Instytut Technologiczno-Przyrodniczy pp. 2.

  • Jasiński A. Słomski R. Szalata M. Lipiński D. 2006. Transplantacja narządów – wyzwanie dla biotechnologii [Organ transplantation – A challenge for biotechnology]. Biotechnologia. No. 72 p. 7–28.

  • Kołwzan B. 2008. Ocena przydatności inokulantów do bioremediacji gleby zanieczyszczonej produktami naftowymi [Assessment of the suitability of inoculants for bioremediation of soil contaminated with petroleum products]. Ochrona Środowiska. T. 30. Nr 4 p. 3–14.

  • Kołwzan B. Adamiak W. Grabas K. Pawełczyk A. 2005. Podstawy mikrobiologii w ochronie środowiska. [Basics of microbiology in environmental protection] [online]. Wrocław. Ofic. Wydaw. PWroc. [Access 20.11.2018]. Available at: https://www.dbc.wroc.pl/dlibra/doccontent?id=1016

  • Koster I.W. Lettinga G. 1985. Application of the upflow anaerobic sludge bed (UASB) process for treatment of complex wastewaters at low temperatures. Biotechnology and Bioengineering. Vol. 27. No. 10 p. 1411–1417.

  • Lanza R.P. Jackson R. Sullivan A. Ringeling J. McGrath C. Kuhtreiber W. Chick W.L. 1999. Xeno-transplantation of cells using biodegradable microcapsules. Transplantation. Vol. 67 p. 1105–1111.

  • Mikołajczak J. Wróbel B. Jurkowski A. 2009. Możliwości i bariery w produkcji biogazu z biomasy trwałych użytków zielonych w Polsce [Possibilities and limitations and biogas production from permanent grassland biomass in Poland]. Woda-Środowisko-Obszary Wiejskie. T. 9. Z. 2(26) p. 139–155.

  • Monds R.D. O'Tool G.A. 2009. The developmental model of microbial biofilms: Ten years of a paradigm up for review. Trends in Microbiology. Vol. 17. No. 2 p.73-87. DOI 10.1016/j.tim.2008.11.001.

  • Schrezenmeir J. Kirchgessner J. Gero L. Kunz L.A. Beyer J. Mueller-Klieser W. 1994. Effect of microencapsulation on oxygen distribution in islets organs. Transplantation. Vol. 57 p. 1308–1314.

  • Skowron K. Bauza-Kaszewska J. Kaczmarek A. Budzyńska A Gospodarek E. 2015. Mikrobiologiczne aspekty gospodarki gnojowicą [Microbiological aspects of slurry management]. Postępy Mikrobiologii. T. 54. Nr 3 p. 235–249.

  • Uludag H. de Vos P. Tresco P.A. 2000. Technology of mammalian cell encapsulation. Advanced Drug Delivery Reviews. Vol. 42. No. 1–2 p. 29–64.

  • Wałowski G. 2017. Fenomenologiczne ujęcie hydrodynamiki przepływu gazu przez struktury porowate [Phenomenological approach to hydrodynamics of gas flow through the porous structure]. Przemysł Chemiczny. T. 96. Nr 5 p. 1171–1178.

Search
Journal information
Impact Factor


CiteScore 2018: 1.55

SCImago Journal Rank (SJR) 2018: 0.401
Source Normalized Impact per Paper (SNIP) 2018: 1.389

Ministry of Science and Higher Education: 40 points

Index Copernicus (ICV) 2018: 132.77 points

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 138 138 9
PDF Downloads 89 89 11