Possibilities and limitations of using Lemna minor, Hydrocharis morsus-ranae and Ceratophyllum demersum in removing metals with contaminated water

Open access


The paper presents the assessment of possibilities and limitations of the use of Lemna minor, Hydrocharis morsus-ranae and Ceratophyllum demersum in removing metals from contaminated waters. Synthetically discussed the role of these species in phytotechnology and their importance in the assessment of surface water status. The variability of concentration of selected metals in waters and the content of metals in the organs of the analysed plants are presented. Their advantages and disadvantages in removing metals from waters due to biological features have been characterized. Minimum and maximum efficiency of metal removal depending on the scale of water pollution was determined. It was found that analysed plants can be used for phytoremediation of metals from water, but the limitation of effectiveness of treatments is the toxicity of these metals to plants and the time of exposure. The highest removal efficiency can be obtained thanks to the use of sequences of single-species filtration systems.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Akhtar A.B.T. Yasar A. Ali R. Irfan R. 2017. Phytoremediation using aquatic macrophytes. In: Phytoremediation. No 5. Eds. A.A. Ansari S.G. Sarvajeet G. Ritu R.L. Guy L. Newman. 1st ed. Springer International Publishing p. 259–274.

  • Al-Ghanem W.M. 2010. Water and Ceratophyllum demersum analyses in Al-Jubail East Saudi Arabia. Journal of the Arabian Aquaculture Society. No. 1(5) p. 35–43.

  • Al-Khafaji M. S. Al-Ani F. H. Ibrahim A. F. 2017. Removal of some heavy metals from industrial wastewater by Lemna minor. KSCE Journal of Civil Engineering. No. 22 (4) p. 1077–1082.

  • Alvarado S. Guedez M. Lue-Meru M.P. Nelson G. Alvaro A. Jesus A.C. Gyulu Z. 2008. Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Bioresource Technology. No. 99 p. 8436–8440.

  • Aravind P. Prasad M.N.V. Malec P. Waloszek A. Strzałka K. 2009. Zinc protects Ceratophyllum demersum L. (freefloating hydrophyte) against reactive oxygen species induced by cadmium. Journal of Trace Elements in Medicine and Biology. No. 23 (1) p. 50–60.

  • Babić M. Radić S. Cvjetko P. Roje V. Pevalek-Kozlina B. Pavlica M. 2009. Antioxidative response of Lemna minor plants exposed to thallium(I)-acetate. Aquatic Botany. No. 91 p. 166–172.

  • Basile A. Sorbo S. Conte B. Cobianchi R. Trinchella F. Capasso C. Carginale V. 2012. Toxicity accumulation and removal of heavy metals by three aquatic macrophytes. International Journal of Phytoremediation. No. 14(4) p. 374–387.

  • Bello A.O. Tawabini B.S. Khalil A.B. Boland C.R. Saleh T.A. 2018. Phytoremediation of cadmium lead and nickel contaminated water by Phragmites australis in hydroponic systems. Ecological Engineering. No. 120 p. 126–133. DOI 10.1016/j.ecoleng.2018.05.035.

  • Bernatowicz S. Wolny P. 1974. Botanika dla limnologów i rybaków [Botany for limnologists and fishermen]. 2nd ed. Warszawa. PWRiL pp. 449.

  • Bhupinder D. 2010. Use of aquatic plants in removing heavy metals from wastewater. Journal of Environmental Engineering. No 2(1/2/3) p. 185–201.

  • Bokhari S.H. Ahmad I. Mahmood-Ul-Hassan M. Mohammad A. 2016. Phytoremediation potential of Lemna minor L. for heavy metals. International Journal of Phytoremediation. No. 18:1 p. 25–32.

  • Buczacki S. 1997. Rośliny wodne [Aquatic plants]. Warszawa. Elipsa. ISBN 8386893303 pp. 127. Catling P.M. Mitrow G. Haber E. Posluszny U. Charlton W.A. 2003. The biology of Canadian weeds. 124. Hydrocharis morsus-ranae L. Canadian Journal of Plant Science. No. 83 p. 1001–1016.

  • Chen M. Zhang L.L. Li J. He X.J. Cai J.C. 2015. Bioaccumulation and tolerance characteristics of a submerged plant (Ceratophyllum demersum L.) exposed to toxic metal lead. Ecotoxicology and Environmental Safety. No 122 p. 313–321.

  • Chorom M. Parnian A. Jaafarzadeh N. 2012. Nickel removal by the aquatic plant (Ceratopyllum demersum L.). International Journal of Environmental Science and Development. No. 3(4) p. 372–375.

  • Czyżyk F. 2003. Badania efektywności pracy oczyszczalni gruntowo-roślinnych i wodno-roślinnych typu „Lemna” [Effectiveness of sewage treatment plants involving soil-vegetable and water vegetable “Lemna-type” system]. Ochrona Środowiska. No. 2 p. 57–60.

  • Dogan M. Akgul H. Inan O.G. Zeren H. 2015. Determination of cadmium accumulation capabilities of aquatic macrophytes Ceratophyllum demersumBacopa monnieri and Rotala rotundifolia. Iranian Journal of Fisheries Sciences. No. 14(4) p. 1010–1017.

  • Duman F. Koca F.D. 2014. Single and combined effects of exposure concentration and duration on biological responses of Ceratophyllum demersum L. exposed to Cr species. International Journal of Phytoremediation. No. 16 p. 1192–1208.

  • El-Khatib A.A Hegazy A.K. Abo-El-Kassem A.M. 2014. Bioaccumulation potential and physiological responses of aquatic macrophytes to Pb pollution. International Journal of Phytoremediation. No. 16 p. 29–45.

  • Foroughi M. Najafi P. Toghiani A. Honarjoo N. 2010. Analysis of pollution removal from wastewater by Ceratophyllum demersum. African Journal of Biotechnology. No. 9(14) p. 2125–2128.

  • Gałczyńska M. 2012. Reakcja przęstki pospolitej (Hippuris vulgaris L.) i żabiścieku pływającego (Hydrocharis morsusranae L.) na zanieczyszczenie wody wybranymi metalami ciężkimi i możliwości wykorzystania tych roślin w fitoremediacji wód [The response of Common Mare’s Tail (Hippuris vulgaris L.) and Common Frogbit (Hydrocharis morsusranae L.) to the pollution of water with selected heavy metals and the possibility to use this plant in phytoremediation of water]. Szczecin. Wydaw. ZUT w Szczecinie. ISBN 978-83-7663-137-0 pp. 138.

  • Gałczyńska M. Bednarz K. 2012. Influence of water contamination on the accumulation of some metals in Hydrocharis morsus-ranae L. Journal of Elementology. No. 17(1) p. 31–41.

  • Gałczyńska M. Buśko M. 2016. Stan zbiorników wodnych w Polsce oraz potencjalne i stosowane metody ich ochrony I rekultywacji [State of water reservoirs in Poland and potential and used methods of their protection and recultivation]. Wiadomości Melioracyjne i Łąkarskie. No. 3 p. 129–135.

  • Ghosh M. Singh S.P. 2005. A review on phytoremediation of heavy metals and utilization of its by products. Applied Ecology and Environmental Research. No. 3(1) p. 1–18.

  • Goswami C. Majumder A. Misra A.K. Bandyopadhyay K. 2014. Arsenic uptake by Lemna minor in hydroponic system. International Journal of Phytoremediation. No. 16 (12) p. 1221–1227.

  • Hanus-Fajerska E. Koźmińska A. 2016. The possibilities of water purification using phytofiltration methods: A review of recent progress. BioTechnologia. No. 97(4) p. 315–322.

  • Hou W. Chen X. Song G. Wang Q. Chi Chang C. 2007. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiology and Biochemistry. No. 45 p. 62–69.

  • Kara Y. 2005. Bioaccumulation of Cu Zn and Ni from the waste water by Nastutium officianale. International Journal of Environmental Science and Technology. No. 2(1) p. 63–67.

  • Kastratović V. Bigović M. Jaćimović Ž. Kosović M. Durović D. Krivokapić S. 2018. Levels and distribution of cobalt and nickel in the aquatic macrophytes found in Skadar Lake Montenegro. Environmental Science and Pollution Research. No. 25(27) p. 26823–26830.

  • Kastratović V. Jaćimović Z. Durović D. Bigović M. Krivokapić S. 2015. Lemna minor L. as bioindicator of heavy metal pollution in Skadar Lake (Montenegro). Kragujevac Journal of Science. No. 37 p. 123–134.

  • Kastratović V. Krivokapić S. Bigović M. Đurović D. Blagojević N. 2014. Bioaccumulation and translocation of heavy metals by Ceratophyllum demersum from Skadar Lake Montenegro. Journal of the Serbian Chemical Society. No. 79(11) p. 1445–1460.

  • Keshinkan O. Goksu M.Z. Basibuyuk M. Foster C.F. 2004. Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresource Technology. No. 92(2) p. 197–200.

  • Khellaf N. Zerdaoui M. 2009. Growth response of the duckweed Lemna minor to heavy metal pollution. Iranian Journal of Environmental Health Science and Engineering. No. 6(3) p. 161–166.

  • Kłosowski S. Kłosowski G. 2001. Rośliny wodne i bagienne [Water and marsh plants]. Warszawa. Ofic. Wydaw. Multico. ISBN 9788377633557 pp. 336.

  • Koźmińska A. Hanus-Fajerska E. Muszyńska E. 2014. Możliwość oczyszczania środowiska wodnych metodą ryzofiltracji [Possibilities of water purification using the rhizofiltration method]. Woda-Środowisko-Obszary Wiejskie. T. 14. Z. 3 (47) p. 89–98.

  • Krems P. Rajfur M. Wacławek M. Kłos A. 2013. The use of water plants in biomonitoring and phytoremediation of waters polluted with heavy metals. Ecological Chemistry and Engineering S. No. 20(2) p. 353–370.

  • Leng R.A. Stambolie J.H. Bell R.E. 1995. Duckweed a potential high protein feed resource for domestic animals and fish. Livestock Research for Rural Development. No. 7(1) p. 36–51.

  • Li B. Gu B. Yang Z. Zhang T. 2018. The role of submerged macrophytes in phytoremediation of arsenic from contaminated water: A case study on Vallisneria natans (Lour.) Hara. Ecotoxicology and Environmental Safety. No. 165 p. 224–231. DOI 10.1016/j.ecoenv.2018.09.023.

  • Markich S.J. King A.R. Wilson S.P. 2006. Non-effect of water hardness on the accumulation and toxicity of copper in a freshwater macrophyte (Ceratophyllum demersum): How useful are hardness-modified copper guidelines for protecting freshwater biota? Chemosphere. No. 65(10) p. 1791–1800.

  • Matache M.L. Marin C. Rozylowicz L. Tudorache A. 2013. Plants accumulating heavy metals in the Danube River wetlands. Journal of Environmental Health Science and Engineering. No. 11(1): 39.

  • Mench M. Schwitzguebel J. Schroeder P. Bert V. Gawronski S. Gupta S. 2009. Assessment of successful experiments and limitations of phytotechnologies: Contaminant uptake detoxification and sequestration and consequences for food safety. Environmental Science and Pollution Research. No. 16 p. 876–900.

  • Miranda A.F. Muradov N. Gujar A. Stevenson T. Nugegoda D. Ball A.S. Mouradov A. 2014. Application of aquatic plants for the treatment of selenium-rich mining wastewater and production of renewable fuels and petrochemicals. Journal of Sustainable Bioenergy Systems. No. 4 p. 97–112.

  • Miretzky P. Saralegui A. Cirelli A. F. 2006. Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere. No. 62 p. 247–254.

  • Mishra S. Srivastava S. Tripathi R.D. Kumar R. Seth C.S. Gupta D.K. 2006. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere. No. 65 p. 1027–1039.

  • Obarska-Pempkowiak H. Kołecka K. Buchholtz K. Gajewska M. 2015. Ekoinżynieria w zintegrowanym odwadnianiu i stabilizacji osadów ściekowych w systemach trzcinowych [Ecoengineering of integrated dewatering and stabilization of sewage sludge in reed systems]. Przemysł Chemiczny. No. 94(12) p. 2299–2303.

  • Ouali N. Belabed B.E. Zeghdoudi F. Rachedi M. 2018. Assessment of metallic contamination in sediment and mullet fish (Mugil cephalus Linnaeus 1758) tissues from the East Algerian coast. Journal of Water and Land Development. No. 38 p. 115–126. DOI 10.2478/jwld-2018-0048.

  • Parnian A. Chorom M. Jaafarzadeh N. Dinarvand M. 2016. Use of two aquatic macrophytes for the removal of heavy metals from synthetic medium. Ecohydrology and Hydrobiology. No. 16(3) p. 194–200.

  • Podbielkowski Z. Tomaszewicz H. 1996. Zarys hydrobotaniki [The outline of hydrobotany]. Warszawa. PWN. ISBN 8301005661 pp. 530. Polechońska L. Dambiec M. 2014. Heavy metal accumulation in leaves of Hydrocharis morsus-ranae L. and biomonitoring applications. Civil and Environmental Engineering Reports. No. 12(1) p. 95–105.

  • Polechońska L. Samecka-Cymerman A. 2015a. Bioaccumulation of macro- and trace elements by European frogbit (Hydrocharis morsus-ranae L.) in relation to environmental pollution. Environmental Science and Pollution Research. No. 23(4) p. 3469–3480.

  • Polechońska L. Samecka-Cymerman A. 2015b. The effect of environmental contamination on the decomposition of European frog-bit (Hydrocharis morsus-ranae L.) in natural conditions. Aquatic Botany. No. 127 p. 35–43.

  • Polechońska L. Samecka-Cymerman A. 2018. Cobalt and nickel content in Hydrocharis morsus-ranae and their bioremoval from single- and binary solutions. Environmental Science and Pollution Research. Vol. 25. Iss. 32 p. 32044–35052. DOI 10.1007/s11356-018-3181-x.

  • Prasad M.N.V. Freitas H.M.D. 2003. Metal hyperaccumulation in plants – Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology. No 93(1) p. 285–321.

  • Pratas J. Favas P. J. C. Paulo C. Rodrigues N. Prasad M. N.V. 2012. Uranium accumulation by aquatic plants from uranium-contaminated water in Central Portugal. International Journal of Phytoremediation. No 14 p. 221–234.

  • Radić S. Babić M. Skobić D. Roje V. Pevalek-Kozlina B. 2009. Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. Ecotoxicology and Environmental Safety. No 73(3) p. 336–342.

  • Rai P.K. 2009. Heavy metals in water sediments and wetland plants in an aquatic ecosystem of tropical industrial region India. Environmental Monitoring and Assessment. No. 158 p. 433–457.

  • Rezania S. Taib S.M. Din M.F.M. Dahalan F.A. Kamyab H. 2016. Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. Journal of Hazardous Materials. No. 318 p. 587–599.

  • Sasmaz A. Dogan I.M. Sasmaz M. 2016. Removal of Cr Ni and Co in the water of chromium mining areas by using Lemna gibba L. and Lemna minor L. Water and Environment Journal. No. 30(3–4) p. 235–242.

  • Scholz M. Anderson P. 2003. Case study: Design operation and water quality management of a combined wet and dry pond system. European Water Management Online Journal. No. 95 p. 269–279.

  • Sekomo C.B. Rousseau D.P Saleh S.A. Lens P.N. 2012. Heavy metal removal in duckweed and algae ponds as a polishing step for textile wastewater treatment. Ecological Engineering. No. 44 p. 102–110.

  • Sikora J. Niemiec M. Szeląg-Sikora A. 2018. Evaluation of the chemical composition of raw common duckweed (Lemna minor L.) and pulp after methane fermentation. Journal of Elementology. No. 23(2) p. 685–695. DOI 10.5601/jelem.2017.22.2.1444.

  • Skrzypiec K. Gajewska M.H. 2017. The use of constructed wetlands for the treatment of industrial wastewater. Journal of Water and Land Development. No. 34 p. 233–240. DOI 10.1515/jwld-2017-0058.

  • Skwierawski A. Skwierawska M. 2013. The role of Hydrocharitetum morsus-ranae in shaping the chemical composition of surface waters. Polish Journal of Environmental Studies. No. 22(6) p. 1825–1833.

  • Szczerbińska N. Gałczyńska M. 2016. Preliminary studies on the possibility of the use of single-species stands biosorption for municipal wastewater treatment. II International Conference “Human Ecology”. 9–10.07.2016 Szczecin Poland. Szczecin. Wydaw. ZUT p. 201–202.

  • Szmit K. Marciniak M. Rajfur M. 2017. Lemna minor L. jako biomonitor punktowych źródeł zanieczyszczenia metalami ciężkimi ekosystemów wodnych. [Lemna minor L. as a biomonitor of point sources of aquatic ecosystems contamination with heavy metals]. Proceedings of ECOpole 2017. No. 1 p. 303–311.

  • Szoszkiewicz K. Zbierska J. Staniszewski R. Jusik S. 2009. The variability of macrophyte metrics used in river monitoring. Oceanological and Hydrobiological Studies. No. 38 p. 117–126.

  • Ucer A. Uyanik A. Kutbay H.G. 2013. Removal of heavy metals using Myriophyllum verticillatum (whorl-leaf watermilfoil) in a hydroponic system. Ekoloji. No 22(87) p. 01–09.

  • Umebese C. E. Motajo A.F. 2008. Accumulation tolerance and impact of aluminium copper and zinc on growth and nitrate reductase activity of Ceratophyllum demersum (Hornwort). Journal of Environmental Biology. No. 29(2) p. 197–200.

  • Uysal Y. 2013. Removal of chromium ions from wastewater by duckweed Lemna minor L. by using a pilot system with continuous flow. Journal of Hazardous Materials. No. 263 p. 486–492.

  • Uysal Y. Taner F. 2009. Effect of pH temperature and lead concentration on the bioremoval of lead from water using Lemna minor. International Journal of Phytoremediation. No. 11 p. 591–608.

  • Uysal Y. Taner F. 2010. Bioremoval of cadmium by Lemna minor in different aquatic conditions. Clean Soil Air Water. No. 38(4) p. 370–377.

  • Vahdatiraad L. Khara H. 2012. Heavy metals phytoremediation by aquatic plants (Hyrocotyle ranocloidesCeratophyllum demersum) of Anzali lagoon. International Journal of Marine Science and Engineering. No. 2(4) p. 249–254.

  • Van der Ent A. Baker A.J.M. Reeves R.D. Pollard A.J. Schat H. 2013. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil. No. 362 p. 319–334.

  • Varga M. Horvatić J. Ćelić A. 2013. Short term exposure of Lemna minor and Lemna gibba to mercury cadmium and chromium. Central European Journal of Biology. No. 8(11) p. 1083–1093.

  • Xing W. Wu H. Hao B. Huang W. Liu G. 2013. Bioaccumulation of heavy metals by submerged macrophytes: looking for hyperaccumulators in eutrophic lakes Environmental Science and Technology. No. 47 p. 4695–4703.

  • Wang Z. Yao L. Liu G. Liu W. 2014. Heavy metals in water sediments and submerged macrophytes in ponds around the Dianchi Lake China. Ecotoxicology and Environmental Safety. No. 107 p. 200–206.

  • Wesołowski P. Brysiewicz A. 2014. Zdolność przybrzeżnej roślinności szuwarowej śródpolnych oczek wodnych do kumulacji makro-i mikroskładników [The ability to onshore rushes in mid-field ponds to accumulate macro and micronutrients]. Woda-Środowisko-Obszary Wiejskie. T. 14. Z. 1(45) p. 111–119.

Journal information
Impact Factor

CiteScore 2018: 1.55

SCImago Journal Rank (SJR) 2018: 0.401
Source Normalized Impact per Paper (SNIP) 2018: 1.389

Ministry of Science and Higher Education: 40 points

Index Copernicus (ICV) 2018: 132.77 points

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 266 213 9
PDF Downloads 256 221 24