Challenges in modelling of water quantity and quality in two contrasting meso-scale catchments in Poland

Open access


This study presents an application of the SWAT model (Soil and Water Assessment Tool) in two meso-scale catchments in Poland (Upper Narew and Barycz), contrasting in terms of human pressures on water quantity and quality. The main objective was multi-variable and multi-site calibration and validation of the model against daily discharge, sediment and nutrient loads as well as discussion of challenges encountered in calibration phase. Multi-site calibration and validation gave varied results ranging from very good (daily discharge) to acceptable (sediment, nitrogen and phosphorus loads in most of gauges) and rather poor (individual gauges for all variables) in both catchments. The calibrated models enabled spatial quantification of water yield, sediment and nutrient loads, indicating areas of special concern in terms of pollution, as well as estimation of contribution of pollution from different sources, indicating agriculture as the most important source in both catchments. During the calibration process a number of significant issues were encountered: (i) global vs. local parametrization, (ii) simulation of different pools of water quality parameters in reservoirs and streams and (iii) underestimation of NO3-N loads in winter due to farmers practices. Discussion of these issues is hoped to aid SWAT model users in Poland in a deeper understanding of mechanisms of multi-variable and multi-site calibration.

Abbaspour K. 2015. SWAT-CUP2: SWAT Calibration and Uncertainty Programs – a user manual. Duebendorf, Switzerland. Eawag: Swiss Federal Institute of Aquatic Science and Technology pp. 95.

Abbaspour K.C., Rouholahnejad E., Vaghefi S., Srinivasan R., Yang H., Kløve B.A. 2015. Continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology. Vol. 524 p. 733–752.

Al-Dousari A., Milewski A., Din S.U., Ahmed M. 2010. Remote sensing inputs to SWAT model for groundwater recharge estimates in Kuwait. Advances in Natural and Applied Sciences. Vol. 4. Iss. 1 p. 71–77.

Banaszuk P. 2007. Wodna migracja składników rozpuszczonych do wód powierzchniowych w zlewni górnej Narwi [Water migration of dissolved particles into surface waters in the Upper Narew Catchment]. Białystok. Wydaw. P.Biał. pp. 182.

Berezowski T., Szcześniak M., Kardel I., Michałowski R., Okruszko T., Mezghani A., Piniewski M. 2016. CPLFD-GDPT5: High-resolution gridded daily precipitation and temperature data set for two largest Polish river basins. Earth System Science Data. Vol. 8. Iss. 1 p. 127–139.

Brown L.C., Barnwell T.O. 1987. The Enhanced Stream Water Quality Models QUAL2E and QUAL2EUNCAS: Documentation and user manual. Cooperative Agreement No. 811883. Athens, Georgia. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency pp. 189.

Brzozowski J., Miatkowski Z., Śliwiński D, Smarzyńska K., Śmietanka M. 2011. Application of SWAT model to small agricultural catchment in Poland. Journal of Water and Land Development. No. 15 p. 157–166.

Čerkasova N., Ertürk A., Zemlys P., Denisov V., Umgiesser G. 2016. Curonian Lagoon drainage basin modelling and assessment of climate change impact. Oceanologia. Vol. 58. Iss. 2 p. 90–102.

Daggupati P., Pai N., Ale S., Douglas-Mankin K.R.W., Zeckoski R., Jeong J., Parajuli P. B., Saraswat D., Youssef M.A. 2015. A recommended calibration and validation strategy for hydrologic and water quality models. American Society of Agricultural and Biological Engineers. Vol. 58. Iss. 6 p. 1705–1719. DOI: 10.13031/trans.58.10712.

Dakhlalla A.O., Parajuli P.B. 2016. Evaluation of the best management practices at the watershed scale to attenuate peak streamflow under climate change scenarios. Water Resources Management. Vol. 30. Iss. 3 p. 963–982.

Drabiński A., Jawecki B., Tokarczyk-Dorociak K. 2010. The role of carp fish ponds in the water management of the river basins. In: Multifunctionality in pond aquaculture in Poland. Perspectives and Prospects. Eds M. Cieśla, M. Kuczyński. Warszawa. Warsaw University of Life Sciences, Editorial House “Wieś Jutra” p. 24–29.

Gao L., Li D. 2014. A review of hydrological/water-quality models. Frontiers of Agricultural Science and Engineering. Vol. 1. Iss. 4 p. 267–276. DOI: 10.15302/J-FASE-2014041.

Gupta H.V., Kling H., Yilmaz K.K., Martinez G.F. 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. Journal of Hydrology. Vol. 377 p. 80–91.

GUS 2000. Bank danych lokalnych. Ochrona środowiska [Local data bank. Environmental protection] [online]. [Access 12.12.2015]. Available at:

GUS 2010. Bank danych lokalnych. Rolnictwo [Local data bank. Agriculture] [online]. [Access 10.10.2015]. Available at:

GUS 2015. Bank danych lokalnych. Ludność [Local data bank. Population] [online]. [Access 10.02.2016]. Available at:

Hargreaves G.H., Samani Z.A. 1982. Estimating potential evapotranspiration. Journal of the Irrigation and Drainage Division. Vol. 108. Iss. 3. Iss. 3 p. 225–230.

Marcinkowski P., Piniewski M., Kardel I., Giełczewski M., Okruszko T. 2013. Modelling of discharge, nitrate and phosphate loads from the Reda catchment to the Puck Lagoon using SWAT. Annals of Warsaw University of Life Sciences – SGGW. Land Reclamation. Vol. 45. Iss. 2 p. 125–141.

MRiRW, MŚ 2004. Kodeks dobrej praktyki rolniczej [A code of good agricultural practice]. Warszawa. ISBN 83-88010-58-1 pp. 93.

Molina-Navarro E., Trolle D., Martínez-Pérez S., Sastre-Merlín A., Jeppesen E. 2014. Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios. Journal of Hydrology. Vol. 509 p. 354–366.

Neitsch S., Arnold J., Kiniry J., Williams J. 2011. Soil and Water Assessment Tool theoretical documentation version 2009. Tech. Rep. TR-406, Texas A&M University. Retrieved 28 March, 2013. Available at:

Ostojski M.S., Niedbala J., Orlinska-Wozniak P., Wilk P., Gębala J. 2014. Soil and Water Assessment Tool model calibration results for different catchment sizes in Poland. Journal of Environmental Quality. Vol. 43. No. 1 p. 132–144.

Overton D.E. 1966. Muskingum flood routing of upland streamflow. Journal of Hydrology. Vol. 4 p. 185–200.

Pagliero L., Bouraouia F., Willems P., Diels J. 2014. Large-scale hydrological simulations using the Soil Water Assessment Tool, protocol development, and application in the Danube basin. Journal of Environmental Quality. Vol. 43. No. 1 p. 145–154.

Piniewski M. 2012. Impacts of natural and anthropogenic conditions on the hydrological regime of rivers: A Narew River Basin case study. Doctoral thesis. Warszawa. IMGW-PIB pp. 194.

Piniewski M., Kardel I., Giełczewski M., Marcinkowski P., Okruszko T. 2014. Climate change and agricultural development: Adapting Polish agriculture to reduce future nutrient loads in a coastal watershed. Ambio. Vol. 43. Iss. 5 p. 644–660. DOI 10.1007/s13280-013-0461-z.

Piniewski M., Marcinkowski P., Kardel I., Giełczewski M., Izydorczyk K., Frątczak W. 2015. Spatial quantification of non-point source pollution in a meso-scale catchment for an assessment of buffer zones efficiency. Water. Vol. 7. Iss. 5 p. 1889–1920. DOI: 10.3390/w7051889.

Piniewski M., Szcześniak M., Kardel I., Berezowski T., Okruszko T., Srinivasan R., Schuler D. V., Kundzewicz Z.W. 2016. Modelling water balance and streamflow at high resolution in the Vistula and Odra basins. Hydrological Sciences Journal (in review).

Santhi C., Arnold J.G., Williams J.R., Dugas W.A., Srinivasan R., Hauck L.M. 2001. Validation of the SWAT model on a large river basin with point and nonpoint sources. Journal of the American Water Resources Association. Vol. 37. Iss. 5 p. 1169–1188.

Sheshukov A.Y., Douglas-Mankin K.R., Sinnathamby S., Daggupati P. 2016. Pasture BMP effectiveness using an HRU-based subarea approach in SWAT. Journal of Environmental Management. Vol. 166 p. 276–284.

Smarzyńska K., Miatkowski Z. 2016. Calibration and validation of SWAT model for estimating water balance and nitrogen losses in a small agricultural watershed in central Poland. Journal of Water and Land Development. No. 29 p. 31–47.

Szcześniak M., Piniewski M. 2015. Improvement of hydrological simulations by applying daily precipitation interpolation schemes in meso-scale catchments. Water. Vol. 7. Iss. 2 p. 747–779. DOI: 10.3390/w7020747.

Śmietanka M. 2014. The influence of permanent grasslands on nitrate nitrogen loads in modelling approach. Journal of Water and Land Development. No. 21 p. 63–70.

Tokarczyk-Dorociak K., Szewrański S., Żmuda R. 2011. The influence of agriculture and water balance on the landscape variety of the Barycz valley. Infrastructure and Ecology of Rural Areas. Vol. 10 p. 187–196.

Twardy S. 1998. Wpływ obornika składowanego na łące na jakość wód powierzchniowych spływających po stoku [Influence of farmyard manure stored on the meadow on quality of surface waters flowing over mountainside]. Pieniny – Przyroda i Człowiek. Nr 6 p. 105–110.

Twardy S., Smoroń S. 2011. Wpływ obornika owczego składowanego na zadarnionym stoku górskim na jakość wód spływających [The effect of sheep manure stored on grassy mountain slope on the quality of runoff waters]. Woda-Środowisko-Obszary Wiejskie. T. 11. Z. 2 (34) p. 165–171.

Tyszewski S., Okruszko T., Pusłowska D. 1997. Propozycja metodyki określania sposobu wykorzystania zasobów wodnych zlewni o szczególnych walorach przyrodniczych na przykładzie górnej Narwi i Supraśli. W: Ochrona jakości i zasobów wodnych. Podstawy racjonalnej gospodarki wodą [Methodology suggested for determination of water resources use in a catchment of unique natural qualities – on an example of the Upper Narew and Supraśl Rivers. In: Water quality and water resources protection. Principles of the rational water management]. Materiały Ogólnopolskiego Seminarium Naukowo-Technicznego. Zakopane–Kościelisko, październik 1996. Zakopane–Kościelisko. PZiTS p. 53–73.

Van Griensven A., Ndomba P., Yalew S., Kilonzo F. 2012. Critical review of SWAT applications in the upper Nile basin countries. Hydrology and Earth System Sciences. Vol. 16 p. 3371–3381.

White K.L., Chaubey I. 2005. Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model. Journal of the American Water Resources Association. Vol. 41. Iss. 5 p. 1077–1089.

Williams J.R. 1990. The erosion-productivity impact calculator (EPIC) model: A case history. Philosophical Transactions: Biological Sciences. Vol. 329 (1255) p. 421–428.

Williams J.R., Berndt H.D. 1977. Sediment yield prediction based on watershed hydrology. Transactions of the ASAE. Vol. 20. Iss. 6 p. 1100–1104.

Woznicki S.A., Nejadhashemi A.P., Abouali M., Herman M.R., Esfahanian E., Hamaamin Y.A., Zhang Z. 2016. Ecohydrological modeling for large-scale environmental impact assessment. Science of the Total Environment. Vol. 543 p. 274–286.

Journal of Water and Land Development

The Journal of Polish Academy of Sciences Committee on Agronomic Sciences, Section of Land Reclamation and Environmental Engineering in Agriculture and Institute of Technology and Life Sciences in Falenty

Journal Information

CiteScore 2018: 1.55

SCImago Journal Rank (SJR) 2018: 0.401
Source Normalized Impact per Paper (SNIP) 2018: 1.389

Ministry of Science and Higher Education: 14 points

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 236 175 14
PDF Downloads 120 98 7