Calibration and validation of SWAT model for estimating water balance and nitrogen losses in a small agricultural watershed in central Poland

Open access

Abstract

Soil and Water Assessment Tool (SWAT) ver. 2005 was applied to study water balance and nitrogen load pathways in a small agricultural watershed in the lowlands of central Poland. The natural flow regime of the Zgłowiączka River was strongly modified by human activity (deforestation and installation of a subsurface drainage system) to facilitate stable crop production. SWAT was calibrated for daily and monthly discharge and monthly nitrate nitrogen load. Model efficiency was tested using manual techniques (subjective) and evaluation statistics (objective). Values of Nash–Sutcliffe efficiency coefficient (NSE), coefficient of determination (R2) and percentage of bias for daily/monthly discharge simulations and monthly load indicated good or very good fit of simulated discharge and nitrate nitrogen load to the observed data set. Model precision and accuracy of fit was proved in validation. The calibrated and validated SWAT was used to assess water balance and nitrogen fluxes in the watershed. According to the results, the share of tile drainage in water yield is equal to 78%. The model analysis indicated the most significant pathway of NO3-N to surface waters in the study area, namely the tile drainage combined with lateral flow. Its share in total NO3-N load amounted to 89%. Identification of nitrogen fluxes in the watershed is crucial for decision makers in order to manage water resources and to implement the most effective measures to limit diffuse pollution from arable land to surface waters.

Abbaspour K.C. 2005. Calibration of hydrologic models: when is a model calibrated. In: MODSIM 2005 International Congress on Modelling and Simulation. Eds. A. Zerger, R.M. Argent. Modelling and Simulation Society of Australia and New Zealand, December 2005 pp. 2449–2455.

Abbaspour K.C. 2009. SWAT-CUP2: SWAT Calibration and Uncertainty Programs version 2 Manual.

Abbaspour K.C. 2011. SWAT-CUP4: SWAT Calibration and Uncertainty Programs – a user Manual.

Abbaspour K.C., Vejdani M., Haghighat S. 2007a. SWAT-CUP calibration and uncertainty programs for SWAT. In: Proceedings of International Congress on Modelling and Simulation (MODSIM’07). Eds. L. Oxley, D. Kulasiri. Melbourne. Modelling and Simulation Society of Australia and New Zealand p. 1603–1609.

Abbaspour K.C., Yang J., Maximov I., Siber R., Bogner K., Mieleitner J., Zobrist J., Srinivasan R. 2007b. Modelling hydrology and water quality in the prealpine/alpine Thur watershed using SWAT. Journal of Hydrology. Vol. 333. Iss. 2–4 p. 413–430.

Akhavan S., Abedi-Koupai J., Mousavi S., Afyuni M., Eslamian S., Abbaspour K. 2010. Application of SWAT model to investigate nitrate leaching in Hamadan-Bahar Watershed, Iran. Agriculture, Ecosystems and Environment. Vol. 139. Iss. 4 p. 675–688.

Arnold J.G., Moriasi D.N., Gassman P.W., Abbaspour K.C., White M.J., Srinivasan R., Shanti C., Harmel R.D., van Griensven A., van Liew M.W., Kannan N., Jha M.K. 2012. SWAT: Model use, calibration and validation. Transactions of the ASABE. Vol. 54. Iss. 4 p. 1491–1508.

Arnold J.G., Muttiah R.S., Srinivasan R., Allen P.M. 2000. Regional estimation of base flow and groundwater recharge in the Upper Mississippi River basin. Journal of Hydrology. Vol. 227. Iss. 1–4 p. 21–40.

Arnold J.G., Srinivasan R., Muttiah R., Williams J. 1998. Large area hydrologic modeling and assessment. P. I: Model development. Journal of the American Water Resources Association. Vol. 34. Iss. 1 p. 73–89.

Bac S., Koźmiński Cz., Rojek M. 1993. Agrometeorologia [Agrometeorology]. Warszawa. PWN. ISBN 83-01111-14-3 pp. 250.

Bärlund I., Kirkkala T., Malve O., Kämäri J. 2007. Assessing SWAT model performance in the evaluation of management actions for the implementation of the Water Framework Directive in a Finnish catchment. Environmental Modelling and Software. Vol. 22. Iss. 5 p. 719–724.

Bąk B. 2003. Warunki klimatyczne Wielkopolski i Kujaw [Climatic conditions of Wielkopolska and Kujawy]. Woda-Środowisko-Obszary Wiejskie. T. 3. Z. specj. (9) p. 11–38.

Belocchi G., Rivington M., Donatelli M., Mathews K. 2010. Validation of biophysical models: Issues and methodologies: A review. Agronomy for Sustainable Development. Vol. 30 p. 109–130.

Bilondi M.P., Abbaspour K.C., Ghahraman B. 2013. Application of three different calibration-uncertainty analysis methods in a semi-distributed rainfall-runoff model application. Middle-East Journal of Scientific Research. Vol. 15. Iss. 9 p. 1255–1263.

Błażejczyk K., Kasperska-Wołowicz W., Łabędzki L., Kunert A. 2005. Multi-annual fluctuations in precipitation and their hydrological and ecological consequences in regional scale. Regional hydrological impacts of climatic change – hydroclimatological variability. Proceedings of symposium S6 held during the Seventh IAHS Scientific Assembly at Foz do Iguaçu, Brazil. IAHS Publ. 296 p. 65–70.

Brenda Z. 1998. Główne czynniki antropogeniczne kształtujące układ stosunków wodnych na obszarze województwa włocławskiego [The main anthropogenic factors influencing water relations in włocławskie voivodship]. PhD dissertation. Warszawa. IGiPZ PAN.

Brykała D. 2009. Przestrzenne i czasowe zróżnicowanie odpływu rzecznego w dorzeczu Skrwy Lewej [Spatial and time differentiation of river discharge within the Skrwa Lewa River basin]. Warszawa. IGiPZ, PAN pp. 149.

Brzozowski J., Miatkowski Z., Śliwiński D., Smarzyńska K., Śmietanka M. 2011. Application of SWAT model to small agricultural catchment in Poland. Journal of Water and Land Development. No. 15 p. 157–166.

Chahinian N., Tournoud M-G., Perrin J-L., Picot B. 2011. Flow and nutrient transport in intermittent rivers: A modelling case-study on the Vène River using SWAT 2005. Hydrological Sciences Journal. Vol. 56. Iss. 2 p. 268–287.

Conan C., de Marsily G., Bouraoui F., Bidoglio G. 2003. A long-term hydrological modelling of the Upper Guadiana river basin (Spain). Physics and Chemistry of the Earth. Vol. 28 p. 193–200.

Council Directive 91/676/EEC of 12 December 1991 concerning the protection of water against pollution caused by nitrates from agricultural sources. OJ L 375 pp. 8.

FAO 2006. World reference base for soil resources 2006. A framework for international classification, correlation and communication. World Soil Resource Report. No. 103. ISBN 92-5-105511-4 pp. 145.

Francos A., Bidoglio G., Galbiati L., Bouraoui F., Elorza F.J., Manni K., Granlund K. 2001. Hydrological and water quality modelling in a medium-sized coastal basin. Physics and Chemistry of the Earth (B). Vol. 26. No. 1 p. 47–52.

Gassman P.W., Reyes M.R., Green C.H., Arnold J.G. 2007. The Soil and Water Assessment Tool: Historical development, applications and future research needs. Transactions of the ASABE. Vol. 50. Iss. 4 p. 1211–1250.

Geying L., Ge Y., Feng G. 2006. Preliminary study on assessment of nutrient transport in the Taihu Basin based on SWAT modeling. Science in China. Ser. D. Earth Sciences. Vol. 49 p. 135–145.

Gikas G., Yiannakopoulou T., Tsihrintzis V. 2006. Modeling of non-point source pollution in a Mediterranean drainage basin. Environmental Modeling and Assessment. No. 11 p. 219–233.

Green C.H., Tomer M.D., Di Luzio M., Armold J.G. 2006. Hydrologic evaluation of the Soil and Water Assessment Tool for a large tile-drained watershed in Iowa. Transactions of the ASABE. Vol. 49. Iss. 2 p. 413–422.

Green C.H., van Griensven A. 2008. Autocalibration in hydrologic modeling: Using SWAT2005 in small-scale watersheds. Environmental Modelling and Software. No. 23 p. 422–434.

Grizzetti B., Bouraoui F., Granlund K., Rekolainen S., Bidoglio G. 2003. Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model. Ecological Modelling. No. 169 p. 25–38.

GUS 2012. Ochrona środowiska [Environment]. Warszawa. ISSN 0867-3217 pp. 599.

GUS 2014. Środki produkcji w rolnictwie w roku gospodarczym 2012/2013 [Means of production of agriculture in the 2012/2013 farming year]. Warszawa pp. 77.

Holvoet K., van Griensven A., Seuntjens P., Vanrolleghem P.A. 2005. Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT. Physics and Chemistry of the Earth. P. A/B/C. Vol. 30. Iss. 8–10 p. 518–526.

IMGW-PIB 2013. Climate change and climate variability in Poland. Warszawa. ISBN 978-83-61102-86-1 pp. 26.

IUNG 1987. Mapa glebowo-rolnicza województwa włocławskiego w skali 1:100 000 [Soil-agricultural map of włocławskie voivodship (1: 100 000)]. Puławy.

Kannan N., White S.M., Worrall F., Whelan M.J. 2007a. Hydrological modelling of a small catchment using SWAT-2000 – Ensuring correct flow partitioning for contaminant modelling. Journal of Hydrology. Vol. 334 p. 64–72.

Kannan N., White S.M., Worrall F., Whelan M.J. 2007b. Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modelling in SWAT-2000. Journal of Hydrology. Vol. 332 p. 456–466.

Kasperska-Wołowicz W., Łabędzki L., Bąk B. 2003. Okresy posuszne w rejonie Bydgoszczy [Droughts in the region of Bydgoszcz]. Woda-Środowisko-Obszary Wiejskie. T. 3. Z. specj. (9) p. 39–56.

Kędziora A. 1995. Podstawy agrometeorologii [Agrometeorology basis]. Warszawa. PWRiL. ISBN 83-09-01641-7 pp. 264.

Kędziora A., Kępińska-Kasprzak M., Kowalczak P., Kundzewicz Z.W., Miler A. T., Pierzgalski E., Tokarczyk T. 2014. Zagrożenia związane z niedoborem wody [Risks resulting from water shortages]. Nauka. Nr 1 p. 149–172.

Koch S., Bauwe A., Lennartz B. 2013. Application of the SWAT Model for a Tile-Drained Lowland Catchment in North-Eastern Germany on Subbasin Scale. Water Resources Management. Vol. 27 p. 791–805.

Kołodziej J., Liniewicz K., Bednarek H. 2005. Intercepcja opadów atmosferycznych w łanach zbóż [Rainfall interception in cereal fields]. Acta Agrophysica. Vol. 6. Nr 2 p. 381–391.

Koźmiński Cz., Michalska B. (eds.) 2001. Atlas klimatycznego ryzyka uprawy roślin w Polsce [Atlas of climatic risk to crop production in Poland]. Szczecin. AR. ISBN 8387327247 pp. 81.

Krause P., Boyle D.P., Bäse F. 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences. Vol. 5 p. 89–97.

Krysanova V., Arnold J.G. 2008. Advances in ecohydrological modelling with SWAT – a review. Hydrological Sciences Journal. Vol. 53. Iss. 5 p. 939–947.

Lam Q.D., Schmalz B., Fohrer N. 2009. Ecohydrological modeling of water discharge and nitrate loads in a mesoscale lowland catchment, Germany. Advances in Geosciences. Vol. 21 p. 49–55.

Lam Q.D., Schmalz B., Fohrer N. 2010. Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using SWAT. Agricultural Water Management. Vol. 97 p. 317–325.

Legates D.R., McCabe G.J. 1999. Evaluating the use of “good-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research. Vol. 35. Iss. 1 p. 233–241.

Leszczycki S. (ed.) 1994. Atlas zasobów, walorów i zagrożeń środowiska geograficznego Polski [Atlas of resources, values and degradation of geographical environment of Poland]. Warszawa. PAN. ISBN 83-90135-50-7 pp. 97.

Łabędzki L. 2002. Drought risk estimation in the Bydgoszcz-Kujawy region using the standardized precipitation index (SPI). Proceedings of International Conference of ICID on Drought Mitigation and Prevention of Land Desertification. Bled, Slovenia, April p. 21–25.

Łabędzki L., Kanecka-Geszke E., Bąk B., Słowińska S. 2011. Estimation of reference evapotranspiration using the FAO Penman-Monteith method for climatic conditions of Poland. In: Evapotranspiration. Ed. L. Labedzki. Rijeka. InTech p. 275–294.

Miatkowski Z., Smarzyńska K. 2014. Dynamika zmian stężenia związków azotu w wodach górnej Zgłowiączki w latach 1990–2011 [The dynamics of nitrogen concentrations in the upper Zgłowiączka River in the years 1990–2011]. Woda-Środowisko-Obszary Wiejskie. T. 14. Z. 3(47) s. 99–111.

Moriasi D.N., Arnold J.G., van Liew M.W., Bignner R.L., Harmel R.D., Veith T.L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. Vol. 50. Iss. 3 p. 885–900.

Moriasi D.N., Wilson B.N., Douglas-Mankin K.R., Arnold J.G., Gowda P.H. 2012. Hydrologic and water quality models: use, calibration and validation. Transactions of the ASABE. Vol. 55. Iss. 4 p. 1241–1247.

Muleta M., Nicklow J. 2005. Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. Journal of Hydrology. Vol. 306. Iss. 1 p. 127–145.

Nash J.E., Sutcliffe J.V. 1970. River flow forecasting through conceptual models part I – A discussion of principles. Journal of Hydrology. Vol. 10. Iss. 3 p. 282–290.

Neitsch S.L. Arnold J.G., Kiniry J.R., Williams J.R. 2005. Soil and Water Assessment Tool. Theoretical documentation version [online]. [Access 08.01.2016]. Available at: http://swatmodel.tamu.edu/media/1292/swat2005theory.pdf

Oeurng C., Sauvage S., Sanchez-Perez J.M. 2011. Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using SWAT model. Journal of Hydrology. Vol. 401 p. 145–153.

Pastuszak M., Witek Z., Nagel K., Wielgat M., Grelowski A. 2005. Role of the Oder estuary (southern Baltic) in transformation of the riverine nutrient loads. Journal of Marine Systems. Vol. 57 p. 30–54.

Petry J., Soulsby C., Malcolm I.A., Youngson A.F. 2002. Hydrological controls on nutrient concentrations and fluxes in agricultural catchments. The Science of the Total Environment. Vol. 294. Iss. 1–3 p. 95–110.

Piniewski M., Okruszko T. 2011. Multi-site calibration and validation of the hydrological component of SWAT in a Large Lowland Catchment. In: Modelling of hydrological processes in the Narew Catchment. Eds. D. Świątek, T. Okruszko. Geoplanet: Earth and Planetary Sciences. Berlin–Heidelberg. Springer-Verlag p. 15–41.

Pisinaras V., Petalas C., Gikas G.D., Gemitzi A., Tsihrintzis V.A. 2009. Hydrological and water quality modeling in a medium-sized basin using the Soil and Water Assessment Tool (SWAT). Desalination. Vol. 250. Iss. 1 p. 274–286.

PN-ES ISO 13395:2001. Jakość wody – Oznaczanie azotu azotynowego i azotanowego oraz ich sumy metodą analizy przepływowej (CFA i FIA) z detekcją spektrometryczną [Water quality – determination of nitrite nitrogen and nitrate and the sum of both by flow analysis (CFA and FIA) and spectrometric detection].

Pohlert T., Huisman A., Breuer L., Frede H.-G. 2005. Modelling of point and non-point source pollution of nitrate with SWAT in the river Dill, Germany. Advances in Geosciences. Vol. 5 p. 7–12.

Sapek A., Nawalany P., Barszczewski J. 2003. Ładunek składników nawozowych wnoszony z opadem mokrym na powierzchnię ziemi w Falentach w latach 1995–2001 [Nutrient load with wet precipitation on the soil surface in Falenty during 1995–2001]. Woda-Środowisko-Obszary Wiejskie. T. 3. Z. specj. (6) p. 69–77.

Savenije H. 2004. The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrological Processes. Vol. 18 p. 1507–1511.

Shanti C., Arnold J.G., Williams J.R., Dugas W.A., Srinivasan R., Hauck L.M. 2001. Validation of the SWAT model on a large river basin with point and nonpoint sources. Journal of the American Water Resources Association. Vol. 37. Iss. 5 p. 1169–1188.

Shoul J., Abbaspour K.C. 2006. Calibration and uncertainty issues of a hydrological model (SWAT) applied to West Africa. Advances in Geosciences. Vol. 9 p. 137–143.

Singh J., Knapp H. V., Demissie M. 2004. Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT.ISWS CR 2004-08 [online]. Champaign, Ill.: Illinois State Water Survey. [Access 08.09.2005]. Available at: www.sws.uiuc.edu/pubdoc/CR/ISWSCR2004-08.pdf

Sorooshian S., Gupta V.K. 1995. Model calibration. In: Computers models of watershed hydrology. Ed. V.P. Singh. Highlands Ranch, CO. Water Resources Publication p. 23–63.

Śmietanka M., Brzozowski J., Śliwiński D., Smarzyńska K., Miatkowski Z., Kalarus M. 2009. Pilot implementation of WFD and creation of a tool for catchment management using SWAT: River Zgłowiączka catchment, Poland. Frontiers of Earth Science in China. Vol. 3. Iss. 2 p. 175–181.

Tong S.T.Y, Naramngam S. 2007. Modeling the impacts of farming practices on water quality in the Little Miami River basin. Environmental Management. Vol. 39 p. 853–866.

Van der Berghe V., van Griensven A., Bauwens W. 2001. Sensitivity analysis and calibration of the parameters of ESWAT: Application to the River Dender. Water Science and Technology. Vol. 43. Iss. 7 p. 295–301.

Van Griensven A., Meixner T., Grunwald S., Bishop T., Diluzio M., Srinivasan R. 2006. A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology. Vol. 324. Iss. 1 p. 10–23.

Van Liew M.W., Arnold J.G., Bosch D.D. 2005. Problems and potential of autocalibrating a hydrologic model. Transactions of the ASAE. Vol. 48. Iss. 3 p. 1025−1040.

Vieux B.E. 2004. Distributed hydrologic modeling using GIS. 2nd ed. Water Science and Technology Library. Vol. 48. Kluwer Academic Publishers. ISBN 1-4020-2459-2 pp. 289.

Wang X., Melesse A.M., Yang W. 2006. Influences of potential evapotranspiration estimation methods on SWAT’s hydrologic simulation in a Northwestern Minnesota watershed. Transactions of the ASABE. Vol. 49. Iss. 6 p. 1755–1771.

Whittaker G., Confesor R. Jr., di Luzio M., Arnold J.G. 2010. Detection of overparametrization and overfitting in an automatic calibration of SWAT. Transactions of the ASABE. Vol. 53. Iss. 5 p. 1487–1499.

Yang J., Reichert P., Abbaspour K.C., Xia J., Yang H. 2008. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. Journal of Hydrology. Vol. 358. Iss. 1 p. 1–23.

Zhang Y., Xia J., Shao Q., Zhai X. 2013. Water quantity and quality simulation by improved SWAT in highly regulated Huai River Basin of China. Stochastic Environmental Research and Risk Assessment. Vol. 27. Iss. 1 p. 11–27.

Journal of Water and Land Development

The Journal of Committee for Land Reclamation and Environmental Engineering in Agriculture of Polish Academy of Sciences and Institute of Technology and Life Sciences in Falenty

Journal Information


CiteScore 2017: 1.04

SCImago Journal Rank (SJR) 2017: 0.304
Source Normalized Impact per Paper (SNIP) 2017: 1.024

Ministry of Science and Higher Education: 14 points

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 187 187 14
PDF Downloads 91 91 8