Assessment of the effect of reactive materials on the content of selected elements in Indian mustard grown in Cu-contaminated soils

Open access

Abstract

Zero-valent iron (ZVI) represent a promising agent for environmental remediation. The research was aimed to determine the influence of copper in doses of 0, 80, 150, 300, and 600 mg Cu·kg−1 of soil as well as ZVI, and lignite additives on the content of macroelements in the Indian mustard (Brassica juncea (L.) Czern.). The average accumulation of analyzing elements in Indian mustard grown in copper contaminated soil were found to follow the decreasing order Mg > Na > P > Ca > K > N. Soil contamination at 600 mg Cu·kg−1 of soil led to the highest increase in P, Mg, N, and Ca content. The application of ZVI had a positive influence on the average phosphorus and potassium content of Indian mustard. Moreover, the application of ZVI and lignite had a positive influence on the average Mg and Ca content in the above-ground parts of Indian mustard. From the analyzed reactive materials, the application of lignite was shown to be the most effective resulting in the decrease in the average nitrogen and calcium content when compared to the control crop. Calcium content in plants from the control group, without the addition of zero-valent iron, and powered lignite (control), was positively correlated with increasing doses of copper.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alowitz M. Scherer M. 2002. Kinetic of nitrate nitrite and Cr(VI) reduction by iron metal. Environmental Science and Technology. Vol. 36 p. 299–306.

  • Bremner J.M. 1965. Total nitrogen. In: Methods of soil analysis. Part 2. Chemical and microbiological properties. Eds C.A. Black D.D. Evans L.E. Ensminger J.L. White F.E. Clark. Madison Winscousin. American Society of Agronomy. Agronomy. No. 9 p. 1149–1178.

  • Burghardt D. Simon E. Knöller K. Kassahun A. 2007. Immobilization of uranium and arsenic by injectable iron and hydrogen stimulated autotrophic sulphate reduction. Journal of Contaminant Hydrology. Vol. 94 p. 305–314.

  • Calderon B. Fullana A. 2015. Heavy metal release due to aging effect during zero valent iron nanoparticles remediation. Water Research. Vol. 83 p. 1–9.

  • Cavell A.J. 1955. The colorimetric determination of phosphorous in plant materials. Journal of the Science of Food and Agriculture. Vol. 6. Iss. 8 p. 479–481.

  • Ciećko Z. Wyszkowski M. Krajewski W. Zabielska J. 2001. Effect of organic matter and liming on the reduction of cadmium uptake from soil by triticale and spring oilseed rape. Science of the Total Environment. Vol. 281. Iss. 1–3 p. 37–45.

  • Collin B. Doelsch E. Keller C. Cazevieille P. Tella M. Chaurand P. Panfili F. Hazemann J.L. Meunier J.D. 2014. Evidence of sulfur-bound reduced copper in bamboo exposed to high silicon and copper concentrations. Environmental Pollution. Vol. 187 p. 22–30.

  • Cundy A.B. Hopkinson L. Whitby R.L. 2008. Use of iron – based technologies in Contaminated land and groundwater remediation: a review. Science of the Total Environment. Vol. 400 p. 42–51.

  • Eghball B. Wienhold B.J. Gilley J.E. Eigenberg R.A. 2002. Nutrient management in the United States: a joint symposium. Journal of Soil and Water Conservation. Vol. 57. Iss. 6 p. 470–473.

  • Eleiwa M.M.E. 2004. Response of lupine and wheat to soil contamination with heavy metals. Egyptian Journal of Soil Science. Vol. 44. Iss. 1 p. 1–17.

  • Fjordbøge A.S. Riis C. Christensen A.G. Kjeldsen P. 2012. ZVI-Clay remediation of a chlorinated solvent source zone Skuldelev Denmark: 1. Site description and contaminant source mass reduction. Journal of Contaminant Hydrology. Vol. 140–141 p. 56–66.

  • Fronczyk J. Pawluk K. 2014. Hydraulic performance of zero-valent iron and nano-sized zero-valent iron permeable reactive barriers – laboratory test. Annals of Warsaw University of Life Sciences-SGGW. Land Reclamation. Vol. 46. Iss. 1 p. 33–42.

  • Hwang Y. Salatas A. Mines P.D. Jakobsen M.H. Andersen H.R. 2016. Graduated characterization method using a multi-well microplate for reducing reactivity of nanoscale zero valent iron materials. Applied Catalysis B: Environmental. Vol. 181 p. 314–320.

  • Jin J. Sun K. Wang Z. Han L. Pan Z. Wu F. Liu X. Zhao Y. Xing B. 2015. Characterization and phthalate esters sorption of organic matter fractions isolated from soils and sediments. Environmental Pollution. Vol. 206 p. 24–31.

  • Kabata-Pendias A. Pendias H. 2001. Trace elements in soils and plants. 3rd ed. Boca Raton London New York Washington DC. CRC Press LLC. ISBN 0-8493-1575-1 pp. 413.

  • Kalembasa S. Wysokiński A. 2002. Wpływ nawożenia mieszaniną osadów ściekowych z popiołem z węgla brunatnego lub CaO na plon i skład chemiczny roślin. Cz. II. Zawartość wybranych makroelementów [The influence of fertilization with sewage sludges mixed with the brown coal or with CaO on the yield and chemical composition of the plants. Part II. The content of selected micronutrients in plants]. Zeszyty Problemowe Postępów Nauk Rolniczych. Z. 482 p. 257–263.

  • Kirschling T.L. Gregory K.B. Minkley E.G. Lowry G.V. Tilton R.D. 2010. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environmental Science and Technology. Vol. 44 p. 3474–3480.

  • Klute A. 1996. Methods of soil analysis. Madison. American Society of Agronomy. Agronomy Monograph 9.

  • Kozera W. Nowak K. Majcherczak E. Barczak B. 2006. Effect of foliar fertilization with micronutrients on content of macronutrients in potato tubers. Journal of Elementology. Vol. 11. Iss. 1 p. 29–34.

  • Kwiatkowska J. Sokołowska Z. Maciejewska A. 2006. Selected physical and chemical properties for evaluating brown coals used for soil reclamation. International Agrophysics. Vol. 20. Iss. 2 p. 121–128.

  • Lemberkovics E. Czinner E. Szentmihalyi K. Balazs A. Szoke E. 2002. Comparative evaluation of Helichrysi flos herbal extracts as dietary sources of plant polyphenols and macro- and microelements. Food Chemistry. Vol. 78 p. 119–127.

  • Leszczyńska D. Kwiatkowska-Malina J. 2011. Effect of organic matter from various sources on yield and quality of plant on soils contaminated with heavy metals. Ecological Chemistry and Engineering S. Vol. 18. Iss. 4 p. 501–507.

  • Lopareva-Pohu A. Verdin A. Garçon G. Lounès-Hadj Sahraoui A. Pourrut B. Debiane D. Waterlot C. Laruelle F. Bidar G. Douay F. Shirali P. 2011. Influence of fly ash aided phytostabilisation of Pb Cd and Zn highly contaminated soils on Lolium perenne and Trifolium repens metal transfer and physiological stress. Environmental Pollution. Vol. 159. Iss. 6 p. 1721–1729.

  • Masciangioli T. Zhang W. 2003. Environmental nanotechnology. Potential and pitfalls. Environmental Science and Technology. Vol. 37 p. 102–108.

  • Mocek A. Drzymała S. 2010. Geneza analiza i klasyfikacja gleb [Genesis analysis and soil classification]. Poznań. Wydaw. UP. ISBN 978-83-71605-86-4 pp. 420.

  • Puls W. Paul C.J. Powell R.M. 1999. The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate – contaminated ground water: a field test. Applied Geochemistry. Vol. 14 p. 989–1000.

  • Radziemska M. Mazur Z. Jeznach J. 2013. Influence of applying halloysite and zeolite to soil contaminated with nickel on the content of selected elements in maize (Zea mays L.). Chemical Engineering Transactions. Vol. 32 p. 301–306.

  • Römheld V. Kirkby E.A. 2007. Magnesium functions in crop nutrition and yield. Proceedings of a Conference in Cambridge (7th Dec. 2007). T. 616. Colchester. IFS p. 151–171.

  • Santana N.A. Ferreira P.A.A. Soriani H.H. Brunetto G. Nicoloso F.T. Antoniolli Z.I. Jacques R.J.S. 2015. Interaction between arbuscular mycorrhizal fungi and vermicompost on copper phytoremediation in a sandy soil. Applied Soil Ecology. Vol. 96 p. 172–182.

  • Szyszko E. 1982. Instrumental analytical method. Warsaw. PZWL pp. 623.

  • Wyszkowski M. Radziemska M. 2010. Effects of chromium (III and VI) on spring barley and maize biomass yield and content of nitrogen compounds. Journal of Toxicology and Environmental Health. Part A. Vol. 73. Iss. 17–18 p. 1274–1282.

  • Wyszkowski M. Radziemska M. 2013. Influence of chromium (III) and (VI) on the concentration of mineral elements in oat (Avena sativa L.). Fresenius Environmental Bulletin. Vol. 22. Iss. 4 p. 979–986.

  • Zaheer I.E. Ali S. Rizwan M. Farid M. Shakoor M.B. Gill R.A. Najeeb U. Iqbal N. Ahmad R. 2015. Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotoxicology and Environmental Safety. Vol. 120 p. 310–317.

  • Zhang W. 2003. Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research. Vol. 5 p. 323–332.

  • Zorrig W. Shahzad Z. Abdelly C. Berthomieu P. 2012. Calcium enhances cadmium tolerance and decreases cadmium accumulation in lettuce (Lactuca sativa). African Journal of Biotechnology. Vol. 11 p. 8441–8448.

  • Xu I. Zhao D. 2007. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Research. Vol. 41. Iss. 10 p. 2101–2108.

Search
Journal information
Impact Factor


CiteScore 2018: 1.55

SCImago Journal Rank (SJR) 2018: 0.401
Source Normalized Impact per Paper (SNIP) 2018: 1.389

Ministry of Science and Higher Education: 40 points

Index Copernicus (ICV) 2018: 132.77 points

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 226 95 2
PDF Downloads 105 57 3