Characteristics of selected active substances used in disinfectants and their virucidal activity against ASFV

Małgorzata Juszkiewicz 1 , Marek Walczak 1  and Grzegorz Woźniakowski 1
  • 1 Department of Swine Diseases, National Veterinary Research Institute, 24-100, Puławy, Poland


African swine fever (ASF), caused by African swine fever virus (ASFV), is currently one of the most important and serious diseases of pigs, mainly due to the enormous sanitary and socio-economic consequences. It leads to serious economic losses, not only because of the near 100% mortality rate, but also through the prohibitions of pork exports it triggers. Currently neither vaccines nor safe and effective chemotherapeutic agents are available against ASFV. The disease is controlled by culling infected pigs and maintaining high biosecurity standards, which principally relies on disinfection. Some countries have approved and/or authorised a list of biocides effective against this virus. This article is focused on the characteristics of chemical substances present in the most popular disinfectants of potential use against ASFV. Despite some of them being approved and tested, it seems necessary to perform tests directly on ASFV to ensure maximum effectiveness of the disinfectants in preventing the spread of ASF in the future.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Alphin R.L., Johnson K.J., Ladman B.S., Benson E.R.: Inactivation of avian influenza virus using four common chemicals and one detergent. Poult Sci 2009, 88, 1181–1185, doi: 10.3382/ps.2008-00527.

  • 2. Ascenzi J.M.: Handbook of disinfectants and antiseptics. Marcel Dekker, New York, 2016, pp. 133–158.

  • 3. Blackwell M., Kang H., Thomas A., Infante P.: Formaldehyde: evidence of carcinogenicity. Am Ind Hyg Assoc J 1981, 42, 34–46.

  • 4. Boone S.A., Gerba C.P.: Significance of fomites in the spread of respiratory and enteric viral disease. Appl Environ Microbiol 2007, 73, 1687–1696.

  • 5. Burton C.H., Turner C.: Manure management: treatment strategies for sustainable agriculture, African swine fever virus. Silsoe Research Institute, 2003, 139.

  • 6. Chan Y.F., Abu Bakar S.: Virucidal activity of Virkon S on human enterovirus. Med J Malaysia 2005, 60, 246–248.

  • 7. Chang A.C., Zsak L., Feng Y., Mosseri R., Lu Q., Kowalski P., Zsak A., Burrage T.G., Neilan J.G., Kutish G.F., Lu Z., Laegreid W., Rock D.L., Cohen S.N.: Phenotype-based identification of host genes required for replication of African swine fever virus. J Virol 2006, 80, 8705–8717.

  • 8. Cisek A.A., Dąbrowska I., Gregorczyk K.P., Wyżewski Z.: African swine fever virus: a new old enemy of Europe. Ann Parasitol 2016, 62, 161–167, doi: 10.17420/ap6203.49.

  • 9. Dixon L.K., Abrams C.C., Bowick G,., Goatley L.C., Kay-Jackson P.C., Chapman D., Liverani E., Nix R., Silk R., Zhang F.: African swine fever virus proteins involved in evading host defence systems. Vet Immunol Immunopathol 2004, 100, 117–134.

  • 10. Environmental health and safety, University of Colorado Boulder. Disinfect Sterilizat Methods 2008.

  • 11. Frant M., Woźniakowski G., Pejsak Z.: African swine fever (ASF) and ticks. No risk of tick-mediated ASF spread in Poland and Baltic states. J Vet Res 2017, 61, 375–380, doi: 10.1515/jvetres-2017-0055.

  • 12. Gallina L., Scagliarini A.: Virucidal efficacy of common disinfectants against orf virus. Vet Rec 2010, 166, 725–726, doi: 10.1136/vr.c3001.

  • 13. Gerba C.P.: Quaternary ammonium biocides: efficacy in application. Appl Environ Microbiol 2015, 81, 464–469, doi: 10.1128/AEM.02633-14.

  • 14. Jia N., Ou Y., Pejsak Z., Zhang Y., Zhang J.: Roles of African swine fever virus structural proteins in viral infection. J Vet Res 2017, 6, 135–143, doi: 10.1515/jvetres-2017-0017.

  • 15. Kalmar I.D., Cay A.B., Tignon M.: Sensitivity of African swine fever virus (ASFV) to heat, alkalinity, and peroxide treatment in presence or absence of porcine plasma. Vet Microbiol 2018, 219, 144–149, doi: 10.1016/j.vetmic.2018.04.025.

  • 16. Koblentz G.D.: Biosecurity reconsidered: calibrating biological threats and responses. International security. Harvard College and the Massachusetts Institute of Technology 2010, 34, 96–132.

  • 17. Kuliś M., Tylkowska-Siek A.: Farm animals in 2017. Statistics Poland, Agriculture Department,

  • 18. Kuliś M.: Pogłowie świn według stanu w marcu 2018 roku, Statistics Poland, Agriculture Department,

  • 19. Levis D.G., Baker B.: Biosecurity of pigs and farm security. Institute of Agriculture and Natural Resources at the University of Nebraska–Lincoln, 2011, 1–31.

  • 20. Lewis T., Zsak L., Burrage T.G., Lu Z., Kutish G.F., Neilan J.G.: An African swine fever virus ERV1-ALR homologue, 9GL, affects virion maturation and viral growth in macrophages and viral virulence in swine. J Virol 2000, 74, 1275–1285.

  • 21. Lipińska-Ojrzanowska A., Walusiak-Skorupa J.: Quaternary ammonium compounds – New occupational hazards. Med Pracy 2014, 65, 675–682, doi:

  • 22. Maillard J.Y.: Virus susceptibility to biocides: an understanding. Rev Med Microbiol 2001, 12, 63–74.

  • 23. McDonnell G., Russell D.A.: Antiseptics and disinfectants: activity, action, and resistance, mechanisms of actions. Clin Microbiol Rev 1999, 12, 149–158.

  • 24. Occupational Safety and Health Administration, 2011,

  • 25. Olesiak P., Stępniak L.: Effectiveness of selected disinfectants against Bacillus spores. Inżynieria i Ochrona Środowiska, 2012, 15, 41–50.

  • 26. Penrith M-L.: African swine fever. Onderstepoort J Vet Res 2009, 76, 91–95.

  • 27. Penrith M.L., Guberti V., Depner K., Lubroth J.: Preparation of African swine fever contingency plans. FAO Rome 2009, 1–69.

  • 28. Philippa C.H., Christopher L.N., Thomas E.W., Paul M.: The envelope of intracellular African swine fever virus is composed of a single lipid bilayer. J Virol 2008, 82, 7905–7912, doi: 10.1128/JVI.00194-08.

  • 29. Porowski M.: Disinfection – myths and facts. National Veterinary Research Institute, Puławy, Poland, 2015,

  • 30. Przedpełski K.: Effective biosecurity, Krajowa Rada Izb Rolniczych, 2018,

  • 31. Quintas A., Pérez-Núñez D., Sánchez E.G., Nogal M.L., Hentze M.W., Castelló A., Revillaa Y.: Characterization of the African swine fever virus decapping enzyme during infection. J Virol 2017, 91, 1–18.

  • 32. Revilla Y., Pérez-Núñez D., Richt J.A.: African swine fever virus biology and vaccine approaches. Adv Virus Res 2018, 100, 41–74, doi: 10.1016/bs.aivir.2017.10.002.

  • 33. Różański H.S.: Antiseptics and disinfectants used in medicine, 2001–2004.

  • 34. Rutala W.A., Weber D.J., Healthcare Infection Control Practices advisory Committee: guideline for disinfection and sterilization in healthcare facilities, chemical disinfectants. Chapel Hill, 2008, 1–161,

  • 35. Sánchez-Cordón P.J., Montoya M., Reis A.L., Dixon L.K.: African swine fever: A re-emerging viral disease threatening the global pig industry. Vet J 2018, 233, 41–48, doi: 10.1016/j.tvjl.2017.12.025.

  • 36. Sattar S.A.: Hierarchy of susceptibility of viruses to environmental surface disinfectants: a predictor of activity against new and emerging viral pathogens. J AOAC Int 2007, 90, 1655–1658.

  • 37. Shirai J., Kanno T., Tsuchiya Y., Mitsubayashi S., Seki R.: Effects of chlorine, iodine, and quaternary ammonium compound disinfectants on several exotic disease viruses. J Vet Med Sci 2000, 62, 85–92.

  • 38. Springthorpe V.S., Sattar S.A.: Chemical disinfection of virus-contaminated surfaces. Critical Rev Environ Control 2009, 20, 169–229.

  • 39. Thurman R.B., Gerba C.P.: Molecular mechanisms of viral inactivation by water disinfectants. Adv Appl Microbiol 1988, 33, 75–105.

  • 40. Trzcińska A., Częścik A., Łagosz B., Siennicka J.: Vaccinia virus (MVA) as a virus model in the study of virucidal activity of disinfectants against enveloped viruses (in Polish). Med Dosw Mikrobiol 2017, 69, 133–141.

  • 41. Turner C., Williams S.M.: Laboratory-scale inactivation of African swine fever virus and swine vesicular disease virus in pig slurry. J Appl Microbiol 1999, 148–157.

  • 42. Turner C., Burton C.H.: The inactivation viruses in pig slurries: a review. Bioresour Technol 1997, 61, 9–20.

  • 43. USDA APHIS.: Potential pesticides to use against the causative agents of selected foreign animal disease in farm settings. 2011, 2.

  • 44. Vepkhvadze N.G., Menteshashvili I., Kokhreidze M., Goginashvili K., Tigilauri T., Mamisashvili E., Gelashvili L., Abramishvili T., Donduashvili M., Ghvinjilia G., Avaliani L., Parkadze O., Ninidze L., Kartskhia N., Napetvaridze T., Rukhadze Z., Asanishvili Z., Weller R., Risatti G.R.: Active surveillance of African swine fever in domestic swine herds in Georgia, 2014. Rev Sci Tech 2017, 36, 879–887, doi: 10.20506/rst.36.3.2721.

  • 45. Wickstrom M.L.: Phenols and related compounds.

  • 46. World Organisation for Animal Health - OIE.: Technical disease card for African swine fever, 2009,

  • 47. World Organisation for Animal Health - OIE: Terrestrial animal health code, general recommendations on disinfection and disinsectisation, Paris, 2011, 1, 169.


Journal + Issues