Macro-microscopic research in reideer (Rangifer tarandus) hoof suitable for efficient locomotion on complex grounds

Open access

Abstract

Introduction: Reindeer are adapted to long distance migration. This species can cope with variations in substrate, especially in ice and snow environment. However, few detailed studies about reindeer hoof are available. Thus this article describes the results of studies on macro- and micro-structures of reindeer hoof.

Material and Methods: The gross anatomy of the reindeer hooves was examined. Stereo microscope (SM) and a scanning electron microscope (SEM) were used to observe four key selected positions of reindeer hooves. Moreover, element contents of the three selected positions of reindeer hooves were analysed using the SEM equipped with energy dispersive spectroscope.

Results: Hoof bone structures were similar to other artiodactyl animals. In the microscopic analysis, the surfaces of the ungula sphere and ungula sole presented irregular laminated structure. Ungula edge surfaces were smooth and ungula cusp surfaces had unique features. Aside from C, O, and N, reindeer hooves contained such elements as S, Si, Fe, Al, and Ca. The content of the elements in different parts varied. Ti was the particular element in the ungula sole, and ungula edge lacked Mg and S which other parts contained.

Conclusion: The macro- and micro-structures of the reindeer hooves showed high performance of skid and abrasion resistance. It is most probably essential to the long distance migration for the animals.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Alex M.: Basic veterinary management of reindeer. In Practice 2014 36 495–500.

  • 2. Brage B.H. Ronny A.: Kelp and seaweed feeding by High-Arctic wild reindeer under extreme winter conditions. Polar Res 2012 31 1–6.

  • 3. Currey J.D.: The design of mineralised hard tissues for their mechanical functions. J Exp Biol 1999 202 3285–3294.

  • 4. Essén-Gustavsson B. Rehbinder C.: Skeletal muscle characteristics of reindeer (Rangifer tarandus L). Comp Biochem Phys A 1985 82 675–679.

  • 5. Emes B. Larson S.G. Stern J.T. Jungers W.L. Biknevicius A.R. Schmitt D.: The kinetics of primate quadrupedalism–hindlimb drive reconsidered. J Hum Evol 1994 26 353–374.

  • 6. Flagstad Ø. Røed K.H.: Refugial origins of reindeer (Rangifer tarandus L) inferred from mitochondrial DNA sequences. Evolution 2003 57 658–670.

  • 7. Fancy S.G. Pank L.F. Whitten K.R. Regelin W.L.: Seasonal movements of caribou in Arctic Alaska as determined by satellite. Can J Zool 1989 67 644–650.

  • 8. Ferguson S.H. Elkie P.C.: Seasonal movement patterns of woodland caribou (Rangifer tarandus caribou). J Zool 2003 262 125–134.

  • 9. Franz T. Demes B. Carlson K.: Gait mechanics of lemurid primates on terrestrial and arboreal substrates. J Hum Evol 2005 48 199–217.

  • 10. Giżejewska A. Nawrocka A. Szkoda J. Żmudzki J. Jaroszewski J. Giżejewski Z.: Variations of selected trace element contents in two layers of red deer antlers. J Vet Res 2016 60 467–471.

  • 11. Guthrie R.D.: Frozen fauna of the mammoth steppe the story of Blue Babe. J Vertebr Paleontol 1990 10 400–401.

  • 12. Houszka M. Piekarska J. Podkowik M. Gorczykowski M. Bania J.: Morphology and molecular study of Fascioloides magna – a growing threat to cervids (Cervidae) in Poland. J Vet Res 2016 60 435–439.

  • 13. Kimura T. Okada M. Ishida H.: Kinesiological characteristics of primate walking its significance in human walking. In: Environment behavior and morphologydynamic interactions in primates. edited by Gustav Fischer New York 1979 pp. 297–311.

  • 14. Katy W. Peter G.T. Karl-Arne S. Jonathan R.C. William I.S.: The musculoskeletal anatomy of the reindeer (Rangifer tarandus): fore-and hindlimb. Polar Biol 2011 34 1571–1578.

  • 15. Lie R.W.: Animal bones from the Late Weichselian in Norway Fauna. Norvegica Serie 1986 A7 41–46.

  • 16. Mårell A. Ball J.P. Hofgaard A.: Foraging and movement paths of female reindeer insights from fractal analysis correlated random walks and Levy Xights. Can J Zool 2002 80 854–865.

  • 17. Mauri N.: Hoof and hoof loads for reindeer (Rangifer tarandu). Rangifer 1990 10 249–254.

  • 18. Nakayama M. Tagashira H. Konishi S. Ogura K.: A direct electrochemical route to construct a polymer/manganese oxide layered structure. Inorg Chem 2004 43 8215–8217.

  • 19. Nicholson K.L. Arthur S.M. Horne J.S. Garton E.O. Del Vecchio P.A.: Modeling caribou movements: seasonal ranges and migration routes of the Central Arctic Herd. PLoS One 2016 11 1–20.

  • 20. Nowak R.M.: Walker’s mammals of the world. John Hopkins University Press Baltimore and London 1999 pp. 1936–1937.

  • 21. Payne R.C. Hutchinson J.R. Robilliard J.J. Smith N.C. Wilson A.M.: Functional specialisation of pelvic limb anatomy in horses (Equus callabus). J Anat 2005 206 557–574.

  • 22. Rankama T. Ukkonen P.: On the early history of the wild reindeer (Rangifer tarandus L) in Finland. Boreas 2001 30 131–147.

  • 23. Rui Z. Songsong M. Xiujuan L. Gang L. Shuliang X. Jianqiao L.: Macroscopic and microscopic study of integuments on ostrich (Struthio camelus) hoof. J Vet Res 2016 60 219–226.

  • 24. Skogland T.: Comparative summer feeding strategies of Arctic and Alpine Rangifer. J Anim Ecol 1980 49 81–98.

  • 25. Skogland T.: Wild reindeer foraging–niche organisation. Holarctic Ecol 1984 7 345–379.

  • 26. Skarin A. Danell Ö. Bergström R. Moen J.: Insect avoidance may override human disturbances in reindeer habitat selection. Rangifer 2004 24 95–103.

  • 27. Tyler N.J.C. Oritsland N.A.: Why don’t Svalbard reindeer migrate? Holarctic Ecol 1989 12 369–376.

  • 28. Vistnes I.I. Nellemann C. Jordhøy P. Støen O.: Summer distribution of wild reindeer in relation to human activity and insect stress. Polar Biol 2008 31 1307–1317.

Search
Journal information
Impact Factor

IMPACT FACTOR J Vet Res 2018: 0.829
5-year IMPACT FACTOR: 0.938

CiteScore 2018: 0.68

SCImago Journal Rank (SJR) 2018: 0.291
Source Normalized Impact per Paper (SNIP) 2018: 0.501

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 318 164 9
PDF Downloads 126 87 4