Content of selected amino acids in the gastrocnemius muscle during experimental hypothyroidism in rats

Open access


Introduction: Thyroid hormones affect protein turnover, and in the case of hypothyroidism a decrease in protein synthesis and reduced release of certain amino acids from skeletal muscles are observed. Changes in the amino acid system of skeletal muscles may be responsible for the occurrence of muscle disorders. Material and Methods: The study measured the content of selected amino acids in the gastrocnemius muscle of Wistar rats during experimental hypothyroidism induced by oral administration of methimazole at a concentration of 0.05% in drinking water for 90 d. The rats were divided into four groups: E1 (n = 6) - experimental males, E2 (n = 6) - experimental females, C1 (n = 6) - control males, and C2 (n = 6) control females. Results: A statistically significant reduction occurred in leucine, isoleucine, and 1-methylhistidine levels in males, and 1-methylhistidine in females, in comparison to the control groups. Conclusion: The hypothyroidism-induced changes in amino acid content may be responsible for the occurrence of skeletal muscle function disorders.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Aranibar N. Vassallo J.D. Rathmacher J. Stryker S. Zhang Y. Dai J. Janovitz E.B. Robertson D. Reily M. Lowe-Krentz L. Lehman-McKeeman L.: Identification of 1- and 3- methylhistidine as biomarkers of skeletal muscle toxicity by nuclear magnetic resonance-based metabolic profiling. Anal Biochem 2011 410 84-91.

  • 2. Bishop C.M. McCabe C.J. Gittoes N.J. Butler P.J. Franklyn J.A.: Tissue-specific regulation of thyroid hormone receptor mRNA isoforms and target gene proteins in domestic ducks. J Endocrinol 2000 165 607-615.

  • 3. Christman A.A.: Factors affecting anserine and carnosine levels in skeletal muscles of various animals. Int J Biochem 1976 9-10 519-527.

  • 4. Clément K. Viguerie N. Diehn M. Alizadeh A. Barbe P. Thalamas C. Storey J.D. Brown P.O. Barsh G.S. Langin D.: In vivo regulation of human skeletal muscle gene expression by thyroid. Horm Genome Res 2002 12 281-291.

  • 5. Doi M. Yamaoka I. Nakayama M. Mochizuki S. Sugahara K. Yoshizawa F.: Isoleucine a blood glucose-lowering amino acid increases glucose uptake in rat skeletal muscle in the absence of increases in AMP-activated protein kinase activity. J Nutr 2005 135 2103-2108.

  • 6. Eivers S.S. McGivney B.A. Fonseca R.G. MacHugh D.E. Menson K. Park S.D. Rivero J.L. Taylor C.T. Katz L.M. Hill E.W.: Alterations in oxidative gene expression in equine skeletal muscle following exercise and training. Physiol Genomics 2010 40 83-93.

  • 7. Escobar J. Frank J.W. Suryawan A. Nguyen H.V. Kimball S.R. Jefferson L.S. Davis T.A.: Regulation of cardiac and skeletal muscle protein synthesis by individual branched-chain amino acids in neonatal pigs. Am J Physiol Endocrinol Metab 2006 290 612-621.

  • 8. Gannon N.P. Vaughan R.A.: Leucine-induced anaboliccatabolism: two sides of the same coin. Amino Acids 2015 doi 10.1007/s00726-015-2109-8.

  • 9. Griffiths R.D.: The evidence for glutamine use in the criticallyill. Proc Nutr Soc 2001 60 403-410.

  • 10. Guo K. Yu Y.H. Hou J. Zhang Y.: Chronic leucine supplementation improves glycemic control in etiologically distinct mouse models of obesity and diabetes mellitus. Nutr Metab 2010 7 57.

  • 11. Harper A.E. Miller R.H. Block K.P.: Branched-chain amino acid metabolism. Annu Rev Nutr 1984 4 409-454.

  • 12. Inukai T. Takanashi K. Takebayashi K. Fujiwara Y. Tayama K. Takemura Y.: Thyroid hormone modulates insulin-like growth factor-I(IGF-I) and IGF-binding protein-3 without mediation by growth hormone in patients with autoimmune thyroid diseases. Horm Metab Res 1999 31 576-579.

  • 13. Kallner G. Vitols S. Ljunggren J.G.: Comparison of standardized initial doses of two antithyroid drugs in the treatment of Graves’ disease. J Intern Med 1996 239 525-529.

  • 14. Kobayashi H. Kato H. Hirabayashi Y. Murakami H. Suzuki H.: Modulations of muscle protein metabolism by branched-chain amino acids in normal and muscle-atrophying rats. J Nutr 2006 136 234-236.

  • 15. Lalani R. Bhasin S. Byhower F. Tarnuzzer R. Grant M. Shen R. Asa S. Ezzat S. Gonzalez-Cadavid N.F.: Myostatin and insulinlike growth factor-I and -II expression in the muscle of rats exposed to the microgravity environment of the NeuroLab space shuttle flight. J Endocrinol 2000 167 417-428.

  • 16. Lee J.W. Kim N.H. Milanesi A.: Thyroid hormone signaling in muscle development repair and metabolism. J Endocrinol Diabetes Obes 2014 2 1046-1054.

  • 17. Morrison W.L. Gibson J.N.A. Jung R.T. Rennie M.J.: Skeletal muscle and whole body protein turnover in thyroid disease. Eur J Clin Invest 1988 18 62-68.

  • 18. Müller M.J. Seitz H.J.: Thyroid hormone action on intermediary metabolism. Part III. Protein metabolism in hyper- and hypothyroidism. Klin Wochenschr 1984 62 97-102.

  • 19. Nicol C.J. Bruce D.S.: Effect of hyperthyroidism on the contractile and histochemical properties of fast and slow twitch skeletal muscle in the rat. Pflugers Arch 1981 390 73-79.

  • 20. Pereira M.G. Silva M.T. da Cunha F.M. Moriscot A.S. Aoki M.S. Miyabara E.H.: Leucine supplementation improves regeneration of skeletal muscles from old rats. Exp Gerontol 2015 doi 10.1016/j.exger.2015.10.006.

  • 21. Postler T.S. Budak M.T. Khurana T.S. Rubinstein N.A.: Influence of hyperthyroid conditions on gene expression in extraocular muscles of rats. Physiol Genomics 2009 37 231-238.

  • 22. Price S.R. Reaich D. Marinovic A.C. England B.K. Bailey J.L. Caban R. Mitch W.E. Maroni B.J.: Mechanisms contributing to muscle-wasting in acute uremia: activation of amino acid catabolism. J Am Soc Nephrol 1998 9 439-443.

  • 23. Riis A.L. Jørgensen J.O. Gjedde S. Nørrelund H. Jurik A.G. Nair K.S. Ivarsen P. Weeke J. Møller N.: Whole body and forearm substrate metabolism in hyperthyroidism: evidence of increased basal muscle protein breakdown. Am J Physiol Endocrinol Metab 2005 288 1067-1073.

  • 24. Snell K. Duff D.A.: Branched chain amino acid metabolism and alanine formation in rat diaphragm muscle in vivo. Biochem J 1984 228 831-835.

  • 25. Song B.C. Joo N.S. Aldini G. Yeum K.J.: Biological functions of histidine-dipeptides and metabolic syndrome. Nutr Res Pract 2014 8 3-10.

  • 26. Sugie H. Verity M.A.: Postnatal histochemical fiber type differentiation in normal and hypothyroid rat soleus muscle. Muscle Nerve 1985 8 654-660.

  • 27. Talvas J. Obled A. Fafournoux P. Mordier S.: Regulation of protein synthesis by leucine starvation involves distinct mechanisms in mouse C2C12 myoblasts and myotubes. J Nutr 2006 136 1466-1471.

  • 28. Taylor W.E. Bhasin S. Artaza J. Byhower F. Azam M. Willard D.H. Jr. Kull F.C. Jr. Gonzalez-Cadavid N.: Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells. Am J Physiol Endocrinol Meta 2001 280 221-228.

  • 29. Udayakumar N. Rameshkumar A.C. Srinivasan A.V.: Hoffmann syndrome: presentation in hypothyroidism. J Postgrad Med 2005 51 332-333.

  • 30. Wieteska-Skrzeczyńska W. Grzelkowska-Kowalczyk K. Jank M. Maciejewski H.: Transcriptional dysregulation of skeletal muscle protein metabolism in streptozotocin-diabetic mice. J Physiol Pharmacol 2009 1 29-36.

  • 31. Yi M. Xiaoqiang C. Qing L. Xiaorong A. Yongfu C.: Effect of thyroid hormone on the gene expression of myostatin in rat skeletal muscle. Asian-Aust J Anim Sci 2009 22 275-281

Journal information
Impact Factor

IMPACT FACTOR J Vet Res 2018: 0,829
5-year IMPACT FACTOR: 0,938

CiteScore 2018: 0.68

SCImago Journal Rank (SJR) 2018: 0.291
Source Normalized Impact per Paper (SNIP) 2018: 0.501

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 218 137 8
PDF Downloads 108 79 3