Influence of post-mortem muscle glycogen content on the quality of beef during aging

Open access


Introduction: Glycolic changes which occur post-mortem have an impact on the physical and sensory features of beef, which in turn determine the successive processes and influence such beef quality traits as colour, tenderness, and cooling loss. The aim of this study was evaluation of the post-mortem changes in bovine meat during aging, quantitative analysis of glycogen and lactic acid, as well as examination of their impact on technological and sensory quality of selected muscles from Holstein-Friesian × Limousin breed carcasses.

Material and Methods: The study included three muscles of different metabolic qualities and sarcomere length: m. semitendinosus, m. longissimus dorsi, and m. psoas major, collected from nine bull carcasses aged 24 ±2 months.

Results: Significant correlations were found between the volume of cooling loss on individual days of aging and the pH value of muscle tissue, lactic acid and glycogen content, as well as beef lightness. However, no significant dependency between the volume of glycogen and the intensity of red and yellow colours was detected.

Conclusion: The colorimetric analysis of glycogen and lactic acid can be an effective tool in predicting the quality of beef.

1. Abril M., Campo M.M., Önenę A., Saňudo C., Alberti P., Negueruela A.I.: Beef colour evolution as a function of ultimate pH. Meat Sci 2000, 58, 69–78.

2. Coombes S.V., Gardner G.E., Pethick D.W., McGilchrist P.: The impact of beef cattle temperament assessed using flight speed on muscle glycogen, muscle lactate and plasma lactate concentrations at slaughter. Meat Sci 2014, 98, 815–821.

3. Cross H.R., West R.L., Dutson T.R.: Comparison of methods for measuring sarcomere length in beef semitendinosus muscle. Meat Sci 1981, 5, 261–266.

4. Díaz M.T., Vieira C., Pérez C., Lauzurica S., González de Chávarri E., Sánchez M., De la Fuente J.: Effect of lairage time (0 h, 3 h, 6 h or 12 h) on glycogen content and meat quality parameters in suckling lambs. Meat Sci 2014, 96, 653–660.

5. England E.M., Matarneh S.K., Oliver E.M., Apaoblaza A., Scheffler T.L., Gerrard D.E.: Excess glycogen does not resolve high ultimate pH of oxidative muscle. Meat Sci 2015, 114, 95–102.

6. England E.M., Matarneh S.K., Scheffler T.L., Wachet C., Gerrard D.E.: pH inactivation of phosphofructokinase arrests postmortem glycolysis. Meat Sci 2014, 98, 850–857.

7. Fernandez X., Lefaucheur L., Candek M.: Comparative study of two classifications of muscle fibres: consequences for the photometric determination of glycogen according to fibre type in red and white muscle of pig. Meat Sci 1995, 41, 225–235.

8. Hambrecht E., Eissen J.J., Newman D.J., Smits C.H.M., Verstegen M.W.A., den Hartog L.A.: Preslaughter handling effects on pork quality and glycolytic potential in two muscles differing in fiber type composition. J Anim Sci 2005, 83, 900–907.

9. Huff-Lonergan E., Baas T.J., Malek M., Dekkers J.C.M., Prusa K., Rothschild M.F.: Correlations among selected pork quality traits. J Anim Sci 2002, 80, 617–627.

10. Immonen K., Puolanne E.: Variation of residual glycogenglucose concentration at ultimate pH values below 5.75. Meat Sci 2000, 55, 279–283.

11. Immonen K., Ruusunen M., Puolanne E.: Some effects of residual glycogen concentration on the physical and sensory quality of normal pH beef. Meat Sci 2000, 55, 33–38.

12. Kyla-Puhju M., Ruusunen M., Puolanne E.: Activity of porcine muscle glycogen debranching enzyme in relation to pH and temperature. Meat Sci 2005, 69, 143–149.

13. Lee N., Sharma V., Singh R., Mohan A.: Effects of injection enhancement carrageenan, sea-salt, and potassium lactate on beef longissimus lumborum muscle sensorial characteristics and color stability. J Food Process Technol 2014, 5, 1–9.

14. Maltin C., Balcerzak D., Tilley R., Delday M.: Determinants of meat quality: tenderness. P Nutr Soc 2003, 62, 337–347.

15. Młynek K., Janiuk I., Dzido A.: Effect of growth intensity of bulls on the microstructure of musculus longissimus lumborum and meat quality. Acta Vet Brno 2012, 81, 127–131.

16. Moczkowska M., Półtorak A., Wierzbicka A.: Impact of the ageing process on the intensity of post mortem proteolysis and tenderness of beef from crossbreeds. Bull Vet Inst Pulawy 2015, 59, 361–367.

17. Monin G., Sellier P.: Pork of low technological quality with a normal rate of muscle pH fall in the immediate post-mortem period: the case of the Hampshire breed. Meat Sci 1985, 13, 49–63.

18. Mortimer S.I., van der Werf J.H.J., Jacob R.H., Hopkins D.L., Pannier L., Pearce K.L., Gardner G.E., Warner R.D., Geesink G.H., Hocking Edwards J.E., Ponnampalami E.N., Ball A.J., Gilmour A.R., Pethick D.W.: Genetic parameters for meat quality traits of Australian lamb meat. Meat Sci 2014, 96, 1016–1024.

19. Półtorak A., Wyrwisz J., Moczkowska M., Marcinkowska-Lesiak M., Stelmasiak A., Rafalska U., Wierzbicka A., Da-Wen Sun.: Microwave heating of bovine gluteus medius muscle: impact on selected physical properties of final product and cooking yield. Int J Food Sci Technol 2014, 50, 958–965.

20. Przybylski W., Monin G., Koćwin-Podsiadła M., Krzęcio E.: Glycogen metabolism in muscle and its effects on meat quality in pigs – a mini review. Pol J Food Nutr Sci 2006, 3, 257–262.

21. Pӧso A.R., Puolanne E.: Carbohydrate metabolism in meat animals. Meat Sci 2005, 70, 423–434.

22. Ryu Y.C., Kim B.C.: Comparison of histochemical characteristics in various pork groups categorized by postmortem metabolic rate and pork quality. J Anim Sci 2006, 84, 894–901.

23. Scheffler T.L., Gerrard D.E.: Mechanisms controlling pork quality development: The biochemistry controlling postmortem energy metabolism. Meat Sci 2007, 77, 7–16.

24. Šimek J., Vorlova L., Malota L., Steinhauserova I., Steinhauser L.: Post-mortal changes of pH value and lactic acid content in the muscles of pigs and bulls. Czech J Anim Sci 2003, 48, 295–299.

25. Strydom P.E., Frylinck L., Montgomery J.L., Smith M.F.: The comparison of three β-agonists for growth performance, carcass characteristics and meat quality of feedlot cattle. Meat Sci 2009, 81, 557–564.

26. Vestergaard M., Therkildsen M., Henckel P., Jensen L.R., Andersen H.R., Sejrsen K.: Influence of feeding intensity, grazing and finishing feeding on meat and eating quality of young bulls and the relationship between muscle fibre characteristics, fibre fragmentation and meat tenderness. Meat Sci 2000, 54, 187–195.

27. Wegner J., Albrecht E., Fiedler I., Teuscher F., Papstein H.J., Ender K.: Growth- and breed-related changes of muscle fiber characteristics in cattle. J Anim Sci 2000, 78, 1485–1496.

28. Young O.A., West J., Hart A.L., van Otterdijk F.F.H.: A method for early determination of meat ultimate pH. Meat Sci 2004, 66, 493–498.

29. Żelechowska E., Przybylski W., Jaworska D., Sante-Lhoutellier V.: Technological and sensory pork quality in relation to muscle and drip loss protein profiles. Eur Food Res Technol 2012, 234, 883–894.

Journal of Veterinary Research

formerly Bulletin of the Veterinary Institute in Pulawy

Journal Information

IMPACT FACTOR Bull Vet Inst Pulawy 2016: 0.462

CiteScore 2016: 0.46

SCImago Journal Rank (SJR) 2015: 0.230
Source Normalized Impact per Paper (SNIP) 2015: 0.383


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 122 122 16
PDF Downloads 37 37 8