Mechanical Systems of Cosserat–Zhilin

Open access


Mechanical systems of Cosserat–Zhilin are introduced as the main object of rational (non-relativistic) mechanics on the base of new notions of vector calculus—sliders and screw measures (bi-measures).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Newton I. Mathematical Principles of Natural Philosophy ed. trans. I. Bernard Cohen and Anne Whitman Berkley University of California Press 1997.

  • [2] Zhilin P. A. Advanced Problems in Mechanics v. 2 St Petersburg Institute for Problems in Mechanical Engineering of Russian Academy of Sciences 2006.

  • [3] Velichenko V. V. Matrix Geometrical Methods in Mechanics with Application to Robot Problems (in Russian) Moscow Nauka 1988.

  • [4] Truesdell C. Essays in History of Mechanics New York Springer–Verlag 1968.

  • [5] Hilbert D. Mathematische Probleme. Vortrag gehalten auf dem internationalen Mathematike–Congress zu Paris 1900 Gott. Nachr. 1900 253–297 (in English as Mathematical problems in Bulletin (new series) of the American mathematical society37 (4) 407-436.

  • [6] Levi-Civita T.The Absolute Differential Calculus (Calculus of Tensors) Blackie &Son Ltd London–Glasgow 1927.

  • [7] Arnold V. I. Mathematical Methods of Classical Mechanics New York Springer Verlag 1989.

  • [8] Golubev Yu. F. Bases of Theoretical Mechanics (in Russian) Moscow MGUpress 2000.

  • [9] Truesdell C. A First Course in Rational Continuum Mechanics Pure and Applied Mathematics v. 71 Boston–Toronto Academic Press 1991.

  • [10] Kolmogorov A. N. Grundbegriffe der Wahrscheinlichkeitsrechnung Berlin Springer Verlag 1933 (in Russian – Basic Notions of Probability Theory Moscow–Leningrad ONTI 1936).

  • [11] Reed M. B. Simon. Methods of Modern Mathematical Physics: 1. Functional Analysis New York London Academic Press 1972.

  • [12] Evans L. K. R. F. Gariepi. Measure Theory and Fine Properties of Functions Roca Raton Ann Arbo London CRC Press 1992.

  • [13] Konoplev V. A. Algebraic Methods in Galilean Mechanics (in Russian) St Petersburg Nauka 1999 (see in English

  • [14] Berthelot J.-M. Mecanique des Solides Rigides London Paris New York Tec&Doc 2006 (see in English – Mechanics of Rigid Bodies 2012 available on

  • [15] Zhilin P. A. Rational Continuum Mechanics (in Russian) St Petersburg SPbGPU 2012 (available in Internet – P.A. Zhilin).

  • [16] Euler L. Découverte d’un nouveau principe de m’ecanique. Mem. Acad. roy. sci. et belles-lettres Berlin 6 (1750) 185-217 1752 (Opera omnia II-5 1957).

  • [17] Euler L. Nova methodus motum corporum rigidorum determinandi. Novi comm. acad sci.imp. Petropoli20 (1776) 208-238 (Opera omnia II-9 1968).

  • [18] Zhuravlev V. F. Bases of Theoretical Mechanics (in Russian) Moscow IFML 2001.

  • [19] Sorokin V.S. Law of conservation of motion and measure of motion in physics. Uspekhi Fizicheskikh Nauk (in Russian) LIX 1956 n. 2 325-362.

  • [20] Vilke V. G. Theoretical Mechanics (in Russian) St Petersburg Lan’ 2003.

  • [21] Mach E. Die Mechanik in ihre Entwickelung historisch–kritisch dargestellt F.A. Brockhaus Leipzig 1904.

  • [22] Pobedria B.E. D.V. Georgievsky. Bases of Continuum Mechanics. Lecture Course (in Russian) Moscow FML 2006.

  • [23] Sommerfeld A. Mechanics – Lectures on Theoretical Physics v. I New York Academic Press 1964.

  • [24] Dimentberg F.M. Screw Calculus and its Applications in Mechanics (in Russian) Moscow Nauka 1965 (in English – AD680993 Clearinghouse for Federal and Scientific Technical Information).

  • [25] Fedorov F.I. Lorentz Group (in Russian) Moscow Nauka 1979.

Journal information
Impact Factor

CiteScore 2018: 0.88

SCImago Journal Rank (SJR) 2018: 0.192
Source Normalized Impact per Paper (SNIP) 2018: 0.646

Mathematical Citation Quotient (MCQ) 2017: 0.01

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 290 290 21
PDF Downloads 237 237 13