A Model of a Motion of Substance in a Channel of a Network

Open access


We study the problem of the motion of substance in a channel of a network for the case of channel having two arms. Stationary regime of the flow of the substance is considered. Analytical relationships for the distribution of the substance in the nodes of the arms of the channel are obtained. The obtained results are discussed from the point of view of technological applications of the model (e.g., motion of substances such as water in complex technological facilities).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Weisbuch G. Complex Systems Dynamics. Addison-Wesley Boston 1991.

  • [2] Marsan G. A. N. Bellomo A. Tosin. Complex Systems and Society: Modeling and Simulation. Springer New York 2013.

  • [3] Amaral L. A. N. J. M. Ottino. Complex Networks. Augmenting and Framework for the Study of Complex Systems. Eur. Phys. J. B38 (2004) 147-162.

  • [4] Vitanov N. K. Science Dynamics and Research Production. Indicators Indexes Statistical Laws and Mathematical Models Springer Cham 2016.

  • [5] Vitanov N. K. Z. I. Dimitrova M. Ausloos. Verhulst-Lotka-Volterra Model of Ideological Struggle. Physica A389 (2010) 4970-4980.

  • [6] Vitanov N. K. I. P. Jordanov Z. I. Dimitrova. On Nonlinear Dynamics of Interacting Populations: Coupled Kink Waves in a System of Two Populations. Communications in Nonlinear Science and Numerical Simulation14 (2009) 2379-2388.

  • [7] Boccaletti S. V. Latora V. Y. Moreno Y. M. Chavez M. D. U. Hwang. Complex Networks: Structure and Dynamics. Physics Reports424 (2006) 175-308.

  • [8] Vitanov N. K. I. P. Jordanov Z. I. Dimitrova. On Nonlinear PopulationWaves. Applied Mathematics and Computation215 (2009) 2950-2964.

  • [9] Vitanov N. K. Z. I. Dimitrova K. N. Vitanov. Traveling Waves and Statistical Distributions Connected to Systems of Interacting Populations. Computers & Mathematics with Applications66 (2013) 1666-1684.

  • [10] Pastor-Satorras R. A. Vespignani. Epidemic Dynamics and Endemic States in Complex Networks. Physical Review E63 (2001) 066117.

  • [11] Vitanov N. K. K. N. Vitanov. Population Dynamics in Presence of State Dependent Fluctuations. Computers & Mathematics with Applications68 (2013) 962-971.

  • [12] Vitanov N. K. M. Ausloos G. Rotundo. Discrete Model of Ideological Struggle Accounting for Migration. Advances in Complex Systems15 (supp01) (2012) 1250049.

  • [13] Albert R. A.-L. Barabasi. Statistical Mechanics of Complex Networks. Rev. Mod. Phys.74 (2002) 47-97.

  • [14] Dorogovtsev S. N. J. F. F. Mendes. Evolution of Networks. Advances in Physics51 (2002) 1079-1187.

  • [15] Newman M. E. J. The Structure and Function of Complex Networks. SIAM Review45 (2003) 167-256.

  • [16] Ford Jr. L. D. D. R. Fulkerson. Flows in Networks. Princeton University Press Princeton NJ 1962.

  • [17] Harris J. R. M. P. Todaro. Migration Unemployment and Development: A Two-Sector Analysis. The American Economic Review60 (1970) 126-142.

  • [18] Willekens F. J. Probability Models of Migration: Complete and Incomplete Data. SA Journal of Demography7 (1999) 31-43.

  • [19] Fawcet J. T. Networks Linkages and Migration Systems. International Migration Review23 (1989) 671-680.

  • [20] Gurak D. T. F. Caces. Migration Networks and the Shaping of Migration Systems. In Kitz M. M. L. L. Lim H. Zlotnik (Eds.) International Migration Systems: A Global Approach. Clarendon Press Oxford 1992 pp. 150-176.

  • [21] Vitanov N. K. K. N. Vitanov. Box Model of Migration Channels. Mathematical Social Sciences80 (2016) 108-114.

  • [22] Chan W.-K. Theory of Nets: Flows in Networks. Wiley New York 1990.

  • [23] Gartner N. H. G. Improta (Eds.) Urban Traffic Networks. Dynamic Flow Modeling and Control. Springer Berlin 1995.

  • [24] Vitanov N. K. Science Dynamics and Research Production. Indicators Indexes Statistical Laws and Mathematical Models. Springer International 2016.

  • [25] Schubert A. W. Glänzel. A Dynamic Look at a Class of Skew Distributions. A Model with Scientometric Application. Scientometrics6 (1984) 149-167.

  • [26] Irwin J. O. The Place of Mathematics in Medical and Biological Sciences. Journal of the Royal Statistical Society126 (1963) 1-44.

  • [27] Irwin J. O. The GeneralizedWaring Distribution applied to Accident Theory. Journal of the Royal Statistical Society131 (1968) 205-225.

  • [28] Diodato V. Dictionary of Bibliometrics. Haworth Press Binghampton NY 1994.

  • [29] Chen W.-C. On the Weak Form of the Zipf’s Law. Journal of Applied Probability17 (1980) 611-622.

  • [30] Simon H. A. On a Class of Skew Distribution Functions. Biometrica42 (1955) 425-440.

Journal information
Impact Factor

CiteScore 2018: 0.88

SCImago Journal Rank (SJR) 2018: 0.192
Source Normalized Impact per Paper (SNIP) 2018: 0.646

Mathematical Citation Quotient (MCQ) 2017: 0.01

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 123 99 7
PDF Downloads 80 50 3