We consider an extension of the methodology of the modified method of simplest equation to the case of use of two simplest equations. The extended methodology is applied for obtaining exact solutions of model nonlinear partial differential equations for deep water waves: the nonlinear Schrödinger equation. It is shown that the methodology works also for other equations of the nonlinear Schrödinger kind.

[1] Haken, H. Advanced Sinergetics. Instability Hierarchies of Self-Organizing Systems and Devices, Berlin, Springer, 1983.

[2] Bakunin, O. G. Turbulence and Diffusion. Scaling versus Equations, Berlin, Springer, 2008.

[3] Haken, H. Brain Dynamics. An Introduction to Models and Simulations, Berlin, Springer, 2008.

[4] Sornette, D. Critical Phenomena in Natural Sciences, Berlin, Springer, 2006.

[5] Frank, T. D. Nonlinear Fokker-Planck Equations. Fundamentals and Applications, Berlin, Springer, 2005.

[6] Vitanov, N. K., Z. I. Dimitrova, H. Kantz. Modified Method of Simplest Equation and its Application to Nonlinear PDEs. Applied Mathematics and Computation, 216 (2010), 2587-2595.

[7] Vitanov, N. K. Modified Method of Simplest Equation: Powerful Tool for Obtaining Exact and Approximate Traveling-Wave Solutions of Nonlinear PDEs. Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 1176-1185.

[8] Vitanov, N. K., Z. I. Dimitrova, K. N. Vitanov. Modified Method of Simplest Equation for Obtaining Exact Analytical Solutions of Nonlinear Partial Differential Equations: Further Development of the Methodology with Applications. Applied Mathematics and Computation, 269 (2015), 363-378.

[9] Murray, J. D. Lectures on Nonlinear Differential Equation Models in Biology, Oxford, Oxford University Press, 1977.

[10] Ablowitz, M., P. A. Clarkson. Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge, Cambridge University Press, 1991.

[11] Vitanov, N. K. Science Dynamics and Research Production. Indicators, Indexes, Statistical Laws and Mathematical Models, Cham, Springer, 2016.

[12] Vitanov, N. K., K. N. Vitanov. Box Model of Migration Channels. Mathematical Social Sciences, 80 (2016), 108-114.

[13] Debnath, L. Nonlinear Partial Differential Equations for Scientists and Engineers, New York, Springer, 2012.

[14] Scott, A. C. Nonlinear Science. Emergence and Dynamics of Coherent Structures, Oxford, Oxford University Press, 1999.

[15] Vitanov, N. K., I. P. Jordanov, Z. I. Dimitrova. On Nonlinear PopulationWaves. Applied Mathematics and Computation, 215 (2009), 2950-2964.

[16] Holmes, P., J. L. Lumley, G. Berkooz. Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge, Cambridge University Press, 1996.

[17] Tabor, M. Chaos and Integrability in Dynamical Systems, NewYork, Wiley, 1989.

[18] Vitanov, N. K., I. P. Jordanov, Z. I. Dimitrova. On Nonlinear Dynamics of Interacting Populations: Coupled Kink Waves in a System of Two Populations. Commun. Nonlinear Sci. Numer. Simulat., 14 (2009), 2379-2388.

[19] Ablowitz, M. J., D. J. Kaup, A. C. Newell. Nonlinear Evolution Equations of Physical Significance. Phys. Rev. Lett., 31 (1973), 125-127.

[20] Ablowitz, M. J., D. J. Kaup, A. C. Newell, H. Segur. Inverse Scattering Transform - Fourier Analysis for Nonlinear Problems. Studies in Applied Mathematics, 53 (1974), 249-315.

[21] Hirota, R. Exact Solution of Korteweg-de Vries Equation for Multiple Collisions of Solitons. Phys. Rev. Lett., 27 (1971), 1192-1194.

[22] He, J.-H., X. -H. Wu. Exp-Function Method for Nonlinear Wave Equations. Chaos, Solitons & Fractals, 30 (2006), 700-708.

[23] Malfliet, W., W. Hereman. The Tanh Method: I. Exact Solutions of Nonlinear Evolution and Wave Equations. Physica Scripta, 54 (1996), 563-568.

[24] Wazwaz, A.-M. Partial Differential Equations and SolitaryWaves Theory, Dordrecht, Springer, 2009.

[25] Kudryashov, N. A. Simplest Equation Method to look for Exact Solutions of Nonlinear Differential Equations. Chaos Solitons & Fractals, 24 (2005), 1217-1231.

[26] Kudryashov, N. A., N. B. Loguinova. Extended Simplest Equation Method for Nonlinear Differential Equations. Applied Mathematics and Computation, 205 (2008), 396-402.

[27] Kudryashov, N. A. Exact Solitary Waves of the Fisher Equation. Phys. Lett. A, 342 (2005), 99-106.

[28] Kudryashov, N. A. Meromorphic Solutions of Nonlinear Ordinary Differential Equations. Communications in Nonlinear Science and Numerical Simulation, 15 (2010), 2778-2790.

[29] Vitanov, N. K., Z. I. Dimitrova. Application of the Method of Simplest Equation for Obtaining Exact Traveling-Wave Solutions for Two Classes of Model PDEs from Ecology and Population Dynamics. Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 2836-2845.

[30] Vitanov, N. K. Application of Simplest Equations of Bernoulli and Riccati Kind for Obtaining Exact Traveling Wave Solutions for a Class of PDEs with Polynomial Nonlinearity. Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 2050-2060.

[31] Vitanov, N. K., Z. I. Dimitrova, K. N. Vitanov. On the Class of Nonlinear PDEs that can be treated by the Modified Method of Simplest Equation. Application to Generalized Degasperis - Processi Equation and B-equation. Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 3033-3044.

[32] Vitanov, N. K., Z. I. Dimitrova, H. Kantz. Application of the Method of Simplest Equation for Obtaining Exact Traveling-Wave Solutions for the Extended Korteweg-de Vries Equation and Generalized Camassa-Holm Equation. Applied Mathematics and Computation, 219 (2013), 7480-7492.

[33] Vitanov, N. K., Z. I. Dimitrova, K. N. Vitanov. TravelingWaves and Statistical Distributions Connected to Systems of Interacting Populations. Computers & Mathematics with Applications, 66 (2013), 1666-1684.

[34] Vitanov, N. K., Z. I. Dimitrova. Solitary Wave Solutions for Nonlinear Partial Differential Equations that contain Monomials of Odd and Even Grades with respect to Participating Derivatives. Applied Mathematics and Computation, 247 (2014), 213-217.

[35] Vitanov, N. K. On Modified Method of Simplest Equation for Obtaining Exact and Approximate Solutions of Nonlinear PDEs: The Role of the Simplest Equation. Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 4215-4231.

[36] Martinov, N., N. Vitanov. On Some Solutions of Two-Dimensional Sine-Gordon Equation. Journal of Physics A: Mathematical and General, 25 (1992), L419-L426.

[37] Martinov, N., N. Vitanov. RunningWave Solutions of the Two-Dimensional Sine-Gordon Equation. Journal of Physics A: Mathematical and General, 25 (1992), 3609-3613.

[38] Martinov, N. K., N. K. Vitanov. New Class of Running-Wave Solutions of the (2+1)-Dimensional Sine-Gordon Equation. Journal of Physics A: Mathematical and General, 27 (1994), 4611-4618.

[39] Vitanov, N. K., N. K. Martinov. On the SolitaryWaves in the Sine-Gordon Model of the Two-Dimensional Josephson Junction. Z. Phys. B, 100 (1996), 129-135.

[40] Biswas, A., S. Konar. Introduction to Non-Kerr Law Optical Solitons, London, Chapman and Hall/CRC, 2006.

[41] Biswas, A., D. Milovic, M. J. Edwards. Mathematical Theory of Dispersion-Managed Optical Solitons, Berlin, Springer, 2010.

[42] Peregrine, D. H. Water Waves, Nonlinear Schrödinger Equations and Their Solutions. J. Austral. Math. Soc. B, 25 (1983), 16-43.

[43] Zhou, Q., D. Yao, S. Ding, Y. Zhang, F. Chen, F. Chen, X. Liu. Spatial Optical Solitons in Fifth Order and Seventh Order Weakly Nonlocal Nonlinear Media. Optik, 124 (2013), 5683-5686.